Answer:
<u>a transverse wave consisting of changing electric fields and changing magnetic fields.</u>
Explanation:
An electromagnetic wave is a wave generated by the vibration of perpendicular electric and magnetic fields, which may progate through vacuum (empty space) or a material medium.
All electromagnetic waves propagate at the same speed in vacuum. This speed is approximately 3.0 × 10⁸ m/s. Which is generally referred as the speed of light, but it is the same constant speed of any electromagnetic wave in the vacuum, c.
In general, waves transfer energy when they travel, but only electromagnetic waves can travel in vacuum. The waves that cannot travel in vacuum are named mechanical waves (they need a medium to travel).
There are two types of waves depending on how they propagate: transverse waves and longitudinal waves. The transverse waves travel perperdiculary to the direcction of the vibration, while longitudinal waves travel parallel to the direction of the vibration.
The classical example of transverse waves is a rope that oscilates up and down. The classical example of longitudinal waves is a spring that you pull and push by an end and so it moves forward and back. Sound is also a longitudinal wave.
Solution:
f ( t )= 20 S ( t ) + 55/30 tS ( t )− 55/30 ( t − 30 ) S ( t − 30 )
• Taking the Laplace Transform:
F ( s ) = 20/s + 55/30 ( 1/s^2 ) – 55/30 ( 1/s^2) e^-30s = 20/s + 55/30 ( 1/s^2 ) ( 1 – e^-30s)
Answer:
36.22 mA
Explanation:
i1 = I , i2 = I, d = 8.2 cm = 0.082 m
Force per unit length = 3.2 nN/m = 3.2 x 10^-9 N/m
μo = 4 π × 10^-7 Tm/A
The formula for the force per unit length between the two wires is given by
F = μo / 4π x (2 i1 x i2) / d
3.2 x 10^-9 = 10^-7 x 2 x I^2 / 0.082
I = 0.0362 A = 36.22 mA
Answer:
The amount of heat transfer is 21,000J .
Explanation:
The equation form of thermodynamics is,
ΔQ=ΔU+W
Here, ΔQ is the heat transferred, ΔU is the change in internal energy, and W is the work done.
Substitute 0 J for W and 0 J for ΔU
ΔQ = 0J+0J
ΔQ = 0J
The change in internal energy is equal to zero because the temperature changes of the house didn’t change. The work done is zero because the volume did not change
The heat transfer is,
ΔQ=Q (in
) −Q (out
)
Substitute 19000 J + 2000 J for Q(in) and 0 J for Q(out)
ΔQ=(19000J+2000J)−(0J)
=21,000J
Thus, the amount of heat transfer is 21,000J .
Answer: 3.142656 × 10^16 feet
Explanation: Given that the
Speed = 982,080,000 ft/s, and
Time = 32,000,000 seconds
The formula for speed is:
Speed = distance/ time
Make distance the subject of formula
Since the time is second in one year and speed is ft/s, substitute both into the formula
Distance = speed × time
distance = 982,080,000 × 32,000,000
Distance = 3.142656 × 10^16 feet.
The distance of one light year in feet is 3.142656 × 10^16