Answer:
I = 1205.69 Lx
Explanation:
The irradiation or intensity of the solar radiation on the earth is maximum for the vertical fire, with a value I₀
I = I₀ sin θ
in this case with the initial data we can calculate the initial irradiance
I₀ =
I₀ = 1600 /sin 53
I₀ = 2003.42 lx
for when the angle is θ = 37º
I = 2003.42 sin 37
I = 1205.69 Lx
In this question, we are missing some of the information that is necessary in order to answer this question properly. However, we can look at what a relational database is in order to help you answer the question on your own.
A relational database is a set of tables from which data can be accessed. This can take place even without the need to reorganize the database tables. The programming interface of a relational database is the Structured Query Language (SQL). This approach was invented by E. F. Codd, who came up with it in 1970 while he was a programmer at IBM.
Answer:

Explanation:
Given that
R=8 ft
Width= 10 ft
We know that hydro statics force given as
F=ρ g A X
ρ is the density of fluid
A projected area on vertical plane
X is distance of center mass of projected plane from free surface of water.
Here
X=8/2 ⇒X=4 ft
A=8 x 10=80 
So now putting the values
F=ρ g A X
F=62.4(32.14)(80)(4)

Answer: the mass flow rate of concentrated brine out of the process is 46,666.669 kg/hr
Explanation:
F, W and B are the fresh feed, brine and total water obtained
w = 2 x 10^4 L/h
we know that
F = W + B
we substitute
F = 2 x 10^4 + B
F = 20000 + B .................EQUA 1
solute
0.035F = 0.05B
B = 0.035F/0.05
B = 0.7F
now we substitute value of B in equation 1
F = 20000 + 0.7F
0.3F = 20000
F = 20000/0.3
F = 66666.67 kg/hr
B = 0.7F
B = 0.7 * F
B = 0.7 * 66666.67
B = 46,666.669 kg/hr
the mass flow rate of concentrated brine out of the process is 46,666.669 kg/hr