Answer:
C
Explanation:
the total resistance is equal to the total potential difference divided by the Current
Answer:
The answer is A.
Explanation:
Two main types of network switches, modular and fixed configuration switches, are used for connecting the devices with one another provided they are on the same network.
As the name suggests, modular switches can be configured according to your needs and specific situations where you need a different setup.
The one advantage fixed-configuration switches have over the modular switches is that they are easier to operate. You can't change anything for a different application but they are simpler to setup and use, you can just plug them in and start using. They are usually for the more casual end-user and home networks etc.
I hope this answer helps.
Answer:
1790 μrad.
Explanation:
Young's modulus, E is given as 10000 ksi,
μ is given as 0.33,
Inside diameter, d = 54 in,
Thickness, t = 1 in,
Pressure, p = 794 psi = 0.794 ksi
To determine shear strain, longitudinal strain and circumferential strain will be evaluated,
Longitudinal strain, eL = (pd/4tE)(1 - 2μ)
eL = (0.794 x 54)(1 - 0.66)/(4 x 1 x 10000)
eL = 3.64 x 10-⁴ radians
Circumferential strain , eH = (pd/4tE)(2-μ)
eH = (0.794 x 54)(2 - 0.33)/(4 x 1 x 10000)
eH = 1.79 x 10-³ radians
The maximum shear strain is 1790 μrad.
Answer:
Output signal shape: square, from 0.1 to 230 MHz. Output power: -10 dBm (at a load of 50 Ohms).
Explanation:
Answer:
theoretical fracture strength = 16919.98 MPa
Explanation:
given data
Length (L) = 0.28 mm = 0.28 × 10⁻³ m
radius of curvature (r) = 0.002 mm = 0.002 × 10⁻³ m
Stress (s₀) = 1430 MPa = 1430 × 10⁶ Pa
solution
we get here theoretical fracture strength s that is express as
theoretical fracture strength =
.............................1
put here value and we get
theoretical fracture strength =
theoretical fracture strength =
theoretical fracture strength = 16919.98 MPa