Answer:
Gravitational Force
Explanation:
Gravitational force also called gravity or gravitation is an attractive force that keeps two objects in space. Gravitational force is an attractive force that tends to pull matters together. Every objects in the universe experience gravitational pull. Planets, stars, galaxies, are held together by gravity. It is a weak force. The weight of an object is the product of gravitational force acting on its mass.
Newton's Law of Universal Gravitation states the force of attraction between two masses m₁ and m₂ in the universe is directly proportional to the product of their masses and inversely proportional to the square of their distance apart.
Where;
F is the gravitational force,
G is the gravitational constant = 6.67 × 10¹¹ m³/kg/s,
m1 and m2 are the masses of the objects,
r is the distance between the centers of the masses
A whole sentence includes a subject and a predicate
Answer:
since small stone has less mass so the gravitational pull of the earth is lesser in case of this but this is not for the bigger stone as the gravitational pull of the earth is greater...
PLEASE MARK BRAINLIEST!!!!!
To explain, I will use the equations for kinetic and potential energy:

<h3>Potential energy </h3>
Potential energy is the potential an object has to move due to gravity. An object can only have potential energy if 1) <u>gravity is present</u> and 2) <u>it is above the ground at height h</u>. If gravity = 0 or height = 0, there is no potential energy. Example:
An object of 5 kg is sitting on a table 5 meters above the ground on earth (g = 9.8 m/s^2). What is the object's gravitational potential energy? <u>(answer: 5*5*9.8 = 245 J</u>)
(gravitational potential energy is potential energy)
<h3>Kinetic energy</h3>
Kinetic energy is the energy of an object has while in motion. An object can only have kinetic energy if the object has a non-zero velocity (it is moving and not stationary). An example:
An object of 5 kg is moving at 5 m/s. What is the object's kinetic energy? (<u>answer: 5*5 = 25 J</u>)
<h3>Kinetic and Potential Energy</h3>
Sometimes, an object can have both kinetic and potential energy. If an object is moving (kinetic energy) and is above the ground (potential), it will have both. To find the total (mechanical) energy, you can add the kinetic and potential energies together. An example:
An object of 5 kg is moving on a 5 meter table at 10 m/s. What is the objects mechanical (total) energy? (<u>answer: KE = .5(5)(10^2) = 250 J; PE = (5)(9.8)(5) = 245 J; total: 245 + 250 = 495 J</u>)