I’m not really sure I’m sorry
Answer:
The solution and the explanation are in the Explanation section.
Explanation:
According to the diagram that is in the attached image, the EFFORT force at point A and the load is at O point. The torque due to weight is:
TA = W * (a * cosθ)
The torque due to effort at C point is:
TC = E * (b * cosθ)
The net torque is equal to 0, we have:
Tnet = 0
W * (a * cosθ) - E * (b * cosθ) = 0

From the figure, you can observe that a/b < 1, thus E < W
Photon energy is directly proportional to the frequency of electromagnetic radiation.
(That would also mean that it's inversely proportional to the wavelength.)
So the photon energy increases as you scan the chart of visible colors
moving from the red end of the rainbow to the blue end.
Weight = (mass) x (acceleration of gravity)
Acceleration of gravity = 9.81 m/s² on Earth, 1.62 m/s² on the Moon.
The feather's weight is . . .
On Earth: (0.0001 kg) x (9.81 m/s²) = <em>0.000981 Newton </em>
On the Moon: (0.0001 kg) x (1.62 m/s²) = <em>0.000162 N</em>
The presence or absence of atmosphere makes no difference. In fact, the numbers would be the same if the feather were sealed in a jar, or spinning wildly in a tornado, or hanging by a thread, or floating in a bowl of water or chicken soup. Weight is just the force of gravity between the feather and the Earth. It's not affected by what's around the feather, or what's happening to it.