Answer:
The time taken is ![t = 32.5 \ s](https://tex.z-dn.net/?f=t%20%3D%20%2032.5%20%5C%20%20s)
Explanation:
From the question we are told that
The speed of first car is ![v_1 = 66.7 \ km/h = 18.3 \ m/s](https://tex.z-dn.net/?f=v_1%20%20%3D%20%2066.7%20%5C%20km%2Fh%20%20%3D%20%2018.3%20%5C%20%20m%2Fs)
The speed of second car is ![v_2 = 52.7 \ km/h = 14.64 \ m/s](https://tex.z-dn.net/?f=v_2%20%20%3D%20%2052.7%20%5C%20km%2Fh%20%20%3D%20%2014.64%20%5C%20%20m%2Fs)
The initial distance of separation is ![d = 119 \ m](https://tex.z-dn.net/?f=d%20%3D%20%20119%20%5C%20m)
The distance covered by first car is mathematically represented as
![d_t = d_i + d_f](https://tex.z-dn.net/?f=d_t%20%3D%20%20d_i%20%20%2B%20%20d_f)
Here
is the initial distance which is 0 m/s
and
is the final distance covered which is evaluated as
So
![d_t = 0 \ m/s + (v_1 * t )](https://tex.z-dn.net/?f=d_t%20%3D%20%200%20%5C%20%20m%2Fs%20%20%2B%20%20%28v_1%20%2A%20t%20%29)
![d_t = 0 \ m/s + (18.3 * t )](https://tex.z-dn.net/?f=d_t%20%3D%20%200%20%5C%20%20m%2Fs%20%20%2B%20%20%2818.3%20%2A%20t%20%29)
The distance covered by second car is mathematically represented as
![d_t = d_i + d_f](https://tex.z-dn.net/?f=d_t%20%3D%20%20d_i%20%20%2B%20%20d_f)
Here
is the initial distance which is 119 m
and
is the final distance covered which is evaluated as
![d_t = 119 + 14.64 * t](https://tex.z-dn.net/?f=d_t%20%3D%20%20119%20%20%2B%2014.64%20%2A%20%20t)
Given that the two car are now in the same position we have that
![119 + 14.64 * t = 0 + (18.3 * t )](https://tex.z-dn.net/?f=119%20%20%2B%2014.64%20%2A%20%20t%20%20%3D%20%20%200%20%20%20%2B%20%20%2818.3%20%2A%20t%20%29)
![t = 32.5 \ s](https://tex.z-dn.net/?f=t%20%3D%20%2032.5%20%5C%20%20s)
Answer:
53.13 °
Explanation:
In order to do this, we just need to apply the following:
tanα = Dy/Dx
Where:
Vy: speed of the ball in the y axis.
Vx: speed of the ball in the x axis.
At this point we do not need the speed of the first ball after the collision because in that moment is already heading in the direction that we are looking for. Therefore, we just need to use the innitial data to calculate the direction which the first ball will go.
According to this, then:
tanα = (40/30)
tanα = 1.3333
α = tan⁻¹(1.3333)
<h2>
α = 53.13°</h2>
This means that the final direction of the first ball is 53.13° and in the x axis because the starting momentum of this ball in the x axis has not dissapeared.
Hope this helps
On Earth, the acceleration of gravity is 9.8 m/s² downward.
So any object with only gravity acting on it gains 9.8 m/s of
downward speed every second.
If the rock starts out moving upward at 10 m/s, then it will
continue upward for only (10/9.8) = 1.02 second, before
it stops rising and starts falling.
Its average speed during that time is (1/2) (10 + 0) = 5 m/s .
At an average speed of 5 m/s for 1.02 sec,
the rock rises
(5 m/s) x (1.02 sec) = 5.102 meters .
They are similar because they are all colors in the spectrum and they are different because you cant seperate primary colors but you can seperate secondary