The Lewis structure of P₄ is shown in 3-D form. The two bottom corner P atoms are facing right in front of us, one P atom behind the two, and one P above it. Each line represents 2 electrons. When you add the lone electrons, you get a total of 20 valence electrons.
Formal charge of each P: 5 - (2 +1/2*6) = 0
The Ancient Egyptians used simple sundials and divided days into smaller parts, and it has been suggested that as early as 1,500BC, they divided the interval between sunrise and sunset into 12 parts. ... Known as a clepsydra, it uses a flow of water to measure time.
The second volume : V₂= 0.922 L
<h3>
Further explanation
</h3><h3>Given
</h3>
7.03 Liters at 31 C and 111 Torr
Required
The second volume
Solution
T₁ = 31 + 273 = 304 K
P₁ = 111 torr = 0,146 atm
V₁ = 7.03 L
At STP :
P₂ = 1 atm
T₂ = 273 K
Use combine gas law :
P₁V₁/T₁ = P₂V₂/T₂
Input the value :
0.146 x 7.03 / 304 = 1 x V₂/273
V₂= 0.922 L
<span>1.05 g/ml * 1000 ml = 1050g/l because of 1g/ml = 1 kg/l
so, a/q
mass of 4.7 l of whole blood in pound =
4.7 * 1050 = 4935 g
so in pound
4935g = 10.87981p</span>
Explanation:
mass H2O2 = 55 mL(1.407 g/mL) = 80.85 g
molar mass H2O2 = 2(1.01 g/mol) + 2(16.00 g/mol) = 34.02 g/mol
moles H2O2 = 80.85 g/34.02 g/mol = 2.377 moles H2O2
For each mole of H2O2 you obtain 0.5 mole of O2 (see the equation).
moles O2 = 2.377 moles H2O2 (1 mole O2)/(2 moles H2O2) = 1.188 moles O2
Now, you need the temperature. If you are at STP (273 K, and 1.00 atm) then 1 mole of an ideal gas at STP has a volume of 22.4 L. Without temperature you are not really able to continue. I will assume you are at STP.
Volume O2 = 1.188 moles O2(22.4 L/mole) = 0.0530 L of O2.
which is 53 mL.