Hydrogen is a
covalent bond. (A bond where one or more pairs of electrons are shared by two atoms)
Answer:
Diluted concentration is 0.5M
Explanation:
Let's solve this with rules of three, although there is a formula to see it easier
In 1000 mL (1L), we have 2 moles of NaOH
In 250 mL we must have (250 . 2) / 1000 = 0.5 moles of NaOH
These moles will be also in 1 L of the final volume of the diluted solution
More easy:
1 L of solution has 0.5 moles of NaOH
Then, molarity is 0.5 M
The formula is: Concentrated M . Conc. volume = Diluted M . Diluted volume
2 M . 0.250L = 1L . Diluted M
0.5M = Diluted M
PH of a solution will be <span>higher than 7
</span>
Ammonium cyanide is a salt formed by hydrogen cyanide and ammonia. Ammonia is a weak base and hydrogen cyanide is a weak acid.
NH₄CN + H₂O ⇒ NH₃ + HCN
NH₄⁺ + H₂O -----> H₃O⁺ + NH₃
CN⁻ + H₂O -----> HCN + OH⁻
Although both compounds are weak electrolytes, NH₃ is somewhat stronger base than HCN is a strong acid, so the solution reacts alkaline. We can prove this using Ka and Kb values:
Ka(HCN) = 4.9 x × 10⁻¹⁰
Kb(NH₃) = 1.8 × 10⁻⁵<span>
Kw= </span>1.0 × 10⁻¹⁴
Let's first calculate Ka for NH₄⁺:
Ka(NH₄⁺) x Kb(NH₃<span>) = pKw
</span>Ka(NH₄⁺) = Kw/Kb(NH₃) = 5.6 x 10⁻¹⁰
Then, Kb for CN⁻:
Kb(CN⁻) x Ka(HCN) = pKw
Kb(CN⁻) = Kw/Ka(HCN) = 2 x 10⁻⁵
From this, we can see that the acid constant NH4⁺ is much lower than the base constant of CN⁻, which will say that the solution of NH₄CN will react slightly alkaline because of the higher presence of hydroxyl ions in solution.
Answer:
350mmHg
Explanation:
Use Dalton law
Total=P gas 1+p gas 2+ P gas 3
825=P1+350+125
825=P1+475
825-475= P1
P1= 350 mm Hg