Answer is: <span>the pH value(level) is the independent variable.</span><span>
</span>
Missing question: <span>We conducted an experiment where we added 0.5 g of lactose to 5 different test tubes all containing 5 different pH levels. What is the independent variable?
In this experiment pH level changes, so results depend on different pH values.
Mass of lactose is same during experiment,so t</span>he number of molecules of product formed per minute is the <span>dependent variable.</span>
Answer:
HCO₂
Explanation:
From the information given:
The mass of the elements are:
Carbon C = 26.7 g; Hydrogen H = 2.24 g Oxygen O = 71.1 g
To determine the empirical formula;
First thing is to find the numbers of moles of each atom.
For Carbon:
For Hydrogen:
For Oxygen:
Now; we use the smallest no of moles to divide the respective moles from above.
For carbon:
For Hydrogen:
For Oxygen:
Thus, the empirical formula is HCO₂
Answer:
Unlike isopropanol, hydrogen peroxide is not a type of alcohol. You might recognize its chemical formula, H2O2, as being similar to that of water (H2O). The difference is that hydrogen peroxide has two oxygen atoms instead of one. That one extra oxygen atom makes it a strong oxidizer.
You would convert the cg to g. 1.66 cg is 0.0166 g. then you add. 0.398 + 0.0166 = 0.4146. the answer is 0.4146 grams.
Answer:
46.761g/mol
Explanation:
Given parameters:
Element = Hilarium , Hi
Isotopes: Hi- 45, Hi-46 and Hi- 48
Natural abundance of Hi-45 = 18.3%
Hi-46 = 34.5%
Hi-48 = 47.2%
Unknown:
Atomic weight of naturally occurring Hilarium = ?
Solution:
Isotopes have been studied extensively by mass spectrometry. The method is used to determine the proportion/percentage/fraction by which each of the isotopes of an element occurs in nature. The proportion is called geonormal abundance. From this we can calculate the atomic weight of an element.
We can use the expression below to find this value:
Atomic weight = m₄₅α₄₅ + m₄₆α₄₆ + m₄₈α₄₈
m is the atomic mass of each isotope and α is the abundance
Atomic weight = (45 x ) + (46 x ) + (48 x )
Atomic weight of Hi = 8.235 + 15.870 + 22.656 = 46.761g/mol