The statement that defines the specific heat capacity for a given sample is the quantity of heat that is required to raise 1 g of the sample by 1°C (Kelvin) at a constant pressure.
<h3>What is specific heat capacity?</h3>
Specific heat capacity is the of heat to increase the temperature per unit mass.
The formula to calculate the specific heat is Q = mct.
The options are attached here:
- The temperature of a given sample is 1 %.
- The temperature that a given sample can withstand.
- The quantity of heat that is required to raise the sample's temperature by 1 °C1 °C (Kelvin).
- The quantity of heat that is required to raise 1 g of the sample by 1°C (Kelvin) at a constant pressure.
Thus, the correct option is 4. The quantity of heat that is required to raise 1 g of the sample by 1°C (Kelvin) at a constant pressure.
Learn more about specific heat capacity
brainly.com/question/1747943
#SPJ1
I’m not sure what the answer is but I hope someone can help you
I think it is 11% I read it on a article on msn.
Answer:
b. CH₂Cl₂ is more volatile than CH₂Br₂ because of the large dispersion forces in CH₂Br₂
Explanation:
CH₂Cl₂ is more volatile than CH₂Br₂ (b.p of CH₂Cl₂ = 39,6 °C; b.p of CH₂Br₂ = 96,95°C). Thus, c. and d. are FALSE
Dipole-dipole interactions in CH₂Cl₂ are greater than the dipole-dipole interactions in CH₂Br₂ because Cl is more electronegative that Br (Cl = 3,16; Br = 2,96). But this mean CH₂Cl₂ is less volatile than CH₂Br₂ but it is false.
There are large dispersion forces in CH₂Br₂ because Br has more electrons and protons than Cl. Large disperson forces mean CH₂Br₂ is less volatile than CH₂Cl₂ and it is true.
I hope it helps!
What kind of question is this