1. The mass of 1.33×10²² mole of Sb is 1.62×10²⁴ g
2. The mass of 4.75×10¹⁴ mole of Pt is 9.26×10¹⁶ g
3. The mass of 1.22×10²³ mole of Ag is 1.32×10²⁵ g
4. The mass of 9.85×10²⁴ mole of Cr is 5.12×10²⁶ g
<h3>1. Determination of the mass of 1.33×10²² mole of Sb</h3>
- Mole of Sb = 1.33×10²² mole
- Molar mass of Sb = 122 g/mol
Mass = mole × molar mass
Mass of Sb = 1.33×10²² × 122
Mass of Sb = 1.62×10²⁴ g
<h3>2. Determination of the mass of 4.75×10¹⁴ mole of Pt</h3>
- Mole of Pt = 4.75×10¹⁴ mole
- Molar mass of Pt = 122 g/mol
Mass = mole × molar mass
Mass of Pt = 4.75×10¹⁴ × 195
Mass of Pt = 9.26×10¹⁶ g
<h3>3. Determination of the mass of 1.22×10²³ mole of Ag</h3>
- Mole of Ag = 1.22×10²³ mole
- Molar mass of Ag = 108 g/mol
Mass = mole × molar mass
Mass of Ag = 1.22×10²³ × 108
Mass of Ag = 1.32×10²⁵ g
<h3>4. Determination of the mass of 9.85×10²⁴ mole of Cr</h3>
- Mole of Cr = 9.85×10²⁴ mole
- Molar mass of Cr = 52 g/mol
Mass = mole × molar mass
Mass of Cr = 9.85×10²⁴ × 52
Mass of Cr = 5.12×10²⁶ g
Learn more about mole:
brainly.com/question/13314627
The chemical equation is said to be balanced if the number of atoms in the reactants and products is the same
<h3>Further explanation</h3>
Equation balanced ⇒ total number of atoms in reactants(on the left)= total number of atoms in products(on the right)
H₂+O₂---> H₂O
Reactants : H₂, O₂
Products : H₂O
not balanced
H₂O₂ ---> H₂O+O₂
Reactants : H₂O₂
Products : H₂O, O₂
not balanced
Na+O₂ ---> Na₂O
Reactants : Na, O₂
Products : Na₂O
not balanced
N₂+H₂ ---> NH₃
Reactants : N₂, H₂
Products : NH₃
not balanced
P₄+O₂---> P₄O₁₀
Reactants : P₄, O₂
Products : P₄O₁₀
not balanced
Fe+H₂O ----> Fe₃O₄ + H₂
Reactants : Fe, H₂O
Products : Fe₃O₄
not balanced
Make a quick chart with each element represented, and count them up. HINT - leave the polyatomic anions together - in this case, PO4
Left Right
1 Ca 3
2 O 1
5 H 2
1 PO4 2
Begin by balancing like finding common denominators of fractions - apply to both sides:
I started by adding a 2 in front of H3PO4 on the left, them 6 in front of H2O on the right. Last, a 3 in front of Ca (OH)2. Then, re-count using the chart format to make sure you're right.
3Ca(OH)2 + 2H3PO4 = Ca3(PO4)2 + 6H2O
Answer:
They're different - heat and thermal energy. ... The heat, in turn, speeds up the molecules within the pot and the water. If you place a thermometer in the water, as the water heats up, you can watch the temperature rise. Again, an increase in internal energy will result in an increase in temperature.