Phosphoenol pyruvate enzyme is not part of gluconeogenesis.
<h3>Phosphoenol pyruvate</h3>
The ester formed when pyruvate and phosphate are combined to form an enol results in phosphoenol pyruvate (2-phosphoenolpyruvate, or PEP). As an anion, it exists. In biochemistry, PEP is a crucial intermediary. Involved in glycolysis and gluconeogenesis, it boasts the highest-energy phosphate bond yet discovered in an organism (61.9 kJ/mol). It also plays a role in carbon fixation and the manufacture of a number of aromatic chemicals in plants. In bacteria, it provides energy for the phosphotransferase system. Enolase reacts with 2-phosphoglyceric acid to produce PEP as a result. Pyruvate kinase (PK) converts PEP to pyruvic acid, and this process produces adenosine triphosphate (ATP) via substrate-level phosphorylation. One of the main units of currency for chemical energy in cells is ATP.
Learn more about Phosphoenol pyruvate here:
brainly.com/question/14838756
#SPJ4
Answer:
Due to presence of a triple bond between the two N−atoms, the bond dissociation enthalpy (941.4 kJ mol
−1
) is very high. Hence, N
2
is the least reactive.
Answer:
C
Explanation:
when the equation is balanced, 2 moles of sodium is to 1 mole of hydrogen in the mole ratio so we need to find how many moles of sodium will produce hydrogen then we cross multiply
well, without the article, I'm guessing the main idea is about the Great Wall of China