Answer:
minerals
Explanation:
coal is made from decomposing matter
The problem can be solved using the following formula:
ΔTb = i Kb <em>m</em>
i = moles particles/moles solute
Kb = 0.512 °C/m
m = molality = moles solute/kg solvent
First we can solve for the molality of the solution:
75.0 g ZnCl₂ / 136.286 g/mol = 0.550 mol ZnCl₂
m = 0.550 mol/0.375 kg
m = 1.468 mol/kg
We can now solve for the change in temperature of the boiling point:
ΔTb = i Kb m
ΔTb = (3 mol particles/1 mol ZnCl₂) (0.512 °C/m) (1.468 m)
ΔTb = 2.25 °C
The boiling point of a solution is the initial boiling point plus the change in boiling point:
BP = 100 °C + 2.25 °C
BP = 102.25 °C
The solution will have a boiling point of 102.25 °C.
<span>"Phase" describes a physical state of matter. The key word to notice is physical. Things only move from one phase to another by physical means. If energy is added (like increasing the temperature) or if energy is taken away (like freezing something), you have created a physical change. </span>
Answer:
Neon (Ne) has the most stable outer electron configuration because the outer electron is completely filled and it has octet structure
Explanation:
The configuration of these elements is as follows;
Cl₁₇ = 2, 8,7 (the outer electron is 7)
Ca₂₀ = 2,8,8,2 (the outer electron is 2)
Ne₁₀ = 2,8 (the outer electron is 8)
Na₁₁ = 2,8,1 (the outer electron is 1)
Based on the outer electron value above, Neon (Ne) has the most stable outer electron configuration because the outer electron is completely filled and it has octet structure.