The answer would be C. 5m
This is because to find d, you would need to divide W (125 J) by F (25 N).
Hope this helps!
The field lines spread apart as we move away from the charge, and they point away from the charge
Explanation:
The electric field produced by a single-point positive charge is a radial field, whose strength is given by the equation

where
k is the Coulomb's constant
Q is the magnitude of the charge
r is the distance from the charge at which the field is calculated
There are two pieces of information given by the field lines shown in the graph:
- The spacing between the lines gives an indication of the strength of the field: the closer to each other they are, the stronger the field. In this case, as we move away from the charge, the spacing between the lines increases, and this means that the field becomes weaker (in fact, it follows an inverse square law,

- The direction of the lines gives the direction of the electric field, which points away from the central charge. This is because the direction of the electric field corresponds to the direction of the force that a positive test charge would feel when immersed in the electric field: in this case, if we place a positive test charge in this field, then it would get repelled away from the central charge (remember that the electric force between two positive charges is repulsive), and therefore, the direction of the electric field is away from the central charge.
Learn more about electric field:
brainly.com/question/8960054
brainly.com/question/4273177
#LearnwithBrainly
Answer:
radius r is 0.414 R
Explanation:
Given data
FCC octahedral site
atomic radius R
to find out
radius r
solution
we know that at FCC octahedral
length of side = 2 R + 2r
and by pythagorean theorem
a = 2√2R
here a = 2R + 2r
so 2R + 2r = 2√2R
so r = ( √2R )- R
r = 0.414 R
so radius r is 0.414 R
Answer:
A: The kinetic energy of the two vehicles is transferred to potential energy when it stops.
B: The more mass an object has the more kinetic energy it will have.
Explanation:
This may be the right answer for your question but if it isn't my bad.
Answer:
16.32 °C
Explanation:
We are given;
Mass of aluminum bowl; m_b = 0.25 kg
Mass of soup; m_s = 0.8 kg
Thus, formula to find the amount of heat energy for a temperature change of 27.6°C to 0°C is;
Q = (m_b•c_b•Δt) + (m_s•c_s•Δt)
Where;
c_b = 0.215 kcal/(kg•°C)
c_s = 1 kcal/(kg•°C)
ΔT = 27.6 - 0 = 27.6°C
Thus;
Q = (0.25 × 0.215 × 27.6) + (0.8 × 1 × 27.6)
Q = 23.5635 Kcal
Now, the energy that exits to be used to freeze the soup is;
Q' = 424 kJ - Q
Let's convert 424 KJ to Kcal
424 KJ = 424/4.184 Kcal = 101.3384 Kcal
Thus;
Q' = 101.3384 - 23.5635
Q' = 77.7749 Kcal
Amount of heat that's removed is given by;
Q_f = Q' - mL
Where;
m = m_s = 0.8 kg
L = 79.8 kcal/kg
Thus;
Q_f = 77.7749 - (0.8 × 79.8)
Q_f = 13.9349 Kcal
Then final temperature will be;
T_f = Q_f/((m_b•c_b) + (m_s•c_s))
T_f = 13.9349/((0.25 × 0.215) + (0.8 × 1))
T_f = 16.32 °C