Answer:
Explanation:
Considering non - relativistic approach : ----
Speed of electron = 1 % of speed of light
= .01 x 3 x 10⁸ m /s
= 3 x 10⁶ m /s
Kinetic energy of electron = 1/2 m v²
= .5 x 9.1 x 10⁻³¹ x ( 3 x 10⁶ )²
= 40.95 x 10⁻¹⁹ J
Kinetic energy in electron comes from lose of electrical energy equal to
Ve where V is potential difference under which electron is accelerated and e is electronic charge .
V x e = kinetic energy of electron
V x 1.6 x 10⁻¹⁹ = 40.95 x 10⁻¹⁹
V = 25.6 Volt .
Density<span> is the </span>mass<span> of an object </span>divided<span> by its </span>volume<span>. So the answer would be Yes. Hope it helps! (:</span>
Answer:
Potential difference = 6.0 V
I for 1.0Ω = 6 A
I for 2.0Ω = 3 A
I for 3.0Ω = 2 A
Explanation:
Potential difference (ΔV) = Current (I) x Resistance (R)
The potential difference is constant and equals 6.0 V, hence;
I = ΔV/R
When R = 1.0, I =6/1 = 6 amperes
When R = 2.0, I = 6/2 = 3 amperes
When R = 3.0, I = 6/3 = 2 amperes
<em>The potential difference is 6.0 V and the current is 6, 3, and 2 amperes for a resistance of 1.0, 2.0 and 3.0Ω respectively.</em>