Answer:
Option A. KCl (aq)
Option D. Mg(OH)₂(s
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
MgCl₂(aq) + KOH(aq) —>
In solution, MgCl₂(aq) and KOH(aq) will dissociate as follow:
MgCl₂(aq) —> Mg²⁺(aq) + 2Cl¯(aq)
KOH(aq) —> K⁺(aq) + OH¯(aq)
MgCl₂(aq) + KOH(aq) —>
Mg²⁺(aq) + 2Cl¯(aq) + 2K⁺(aq) + OH¯(aq) —> 2K⁺(aq) + 2Cl¯(aq) + Mg(OH)₂ (s)
MgCl₂(aq) + KOH(aq) —> 2KCl (aq) + Mg(OH)₂(s)
Thus, the products of the above reaction are: KCl(aq) and Mg(OH)₂(s)
Thus, option A and D gives the correct answer to the question.
We are given that 1 teaspoon is equivalent to 5 mL,
therefore 0.75 teaspoon is:
0.75 teaspoon * (5 mL / 1 teaspoon) = 3.75 mL
So the mass is density times volume:
mass = (12.5 mg/5 ml) * 3.75 mL
<span>mass = 9.375 mg</span>
Answer:
i honetly dont thing anyone knows that so look it up
Explanation:
The answer for the following question is answered below.
- <em><u>Therefore the new pressure of the gas is 1.76 atm.</u></em>
Explanation:
Given:
Initial pressure of the gas = 1.34 atm
Initial temperature of the gas = 273 K
final temperature of the gas = 312 K
To solve:
Final temperature of the gas
We know;
From the ideal gas equation
P × V = n × R × T
So;
from the above equation we can say that
<em>P ∝ T</em>
= constant
= 
Where;
= initial pressure of a gas
= final pressure of a gas
= initial temperature of a gas
= final temperature of a gas
= 
= 1.76 atm
<em><u>Therefore the new pressure of the gas is 1.76 atm.</u></em>