The conditions of temperature and pressure in which a gas least soluble in water is low pressure and high temperature.
<h3>What is Henry Law?</h3>
The amount of dissolved gas in a liquid is proportional to its partial pressure above the liquid, according to Henry's law.
From this law it is clear that:
- As the pressure of the gas increases solubility of the gas on the liquid also increases.
But if the temperature of the liquid decreases then the solubility of the gas also increases.
Hence at low pressure and high temperature, gas is least soluble.
To know more about solubility of gas, visit the below link:
brainly.com/question/14747303
#SPJ4
Answer:
Explanation:
1) Valence electrons
2) Electrons
3) 2 electrons on K-shell
4) 8 electrons on L-Shell
5) 18 electrons on M-shell
6) nucleus
7) Proton
8) neutron
9) principal energy level
10) atomic number
11) symbol of the atom
12) name of the atom
13) atomic mass
The ribosomes are the ones delivering the products of the endoplasmic reticulum
Answer:
Part A. The half-cell B is the cathode and the half-cell A is the anode
Part B. 0.017V
Explanation:
Part A
The electrons must go from the anode to the cathode. At the anode oxidation takes place, and at the cathode a reduction, so the flow of electrons must go from the less concentrated solution to the most one (at oxidation the concentration intends to increase, and at the reduction, the concentration intends to decrease).
So, the half-cell B is the cathode and the half-cell A is the anode.
Part B
By the Nersnt equation:
E°cell = E° - (0.0592/n)*log[anode]/[cathode]
Where n is the number of electrons being changed in the reaction, in this case, n = 2 (Sn goes from S⁺²). Because the half-reactions are the same, the reduction potential of the anode is equal to the cathode, and E° = 0 V.
E°cell = 0 - (0.0592/2)*log(0.23/0.87)
E°cell = 0.017V