Answer:
Giving away protons to the water molecules
Explanation:
When acids are mixed with water the following reaction takes place:
H^+(aq) + H2O(l) ------> H3O^+(aq)
Hence when acids are added to water, acids donate a proton to water to form the oxonium ion H3O^+ by coordinate covalent bonding. Note that acids contain the hydrogen ion H^+
They’re Eukaryotic/ the Eukarya kingdom
Hope this helps :)
The initial temperature is 137.34 °C.
<u>Explanation:</u>
As the specific heat formula says that the heat energy required is directly proportional to the mass and change in temperature of the system.
Q = mcΔT
So, here the mass m is given as 23 kg, the specific heat of steel is given as c = 490 J/kg°C and the initial temperature is required to find with the final temperature being 140 °C. Also the heat energy required is 30,000 J.
ΔT =
ΔT =
Since the difference in temperature is 2.66, then the initial temperature will be
Final temperature - Initial temperature = Change in temperature
140-Initial temperature = 2.66
Initial temperature = 140-2.66 = 137.34 °C
Thus, the initial temperature is 137.34 °C.
Answer:
Moon rocks contain few volatile substances (e.g. water), which implies extra baking of the lunar surface relative to that of Earth. The relative abundance of oxygen isotopes on Earth and on the Moon are identical, which suggests that the Earth and Moon formed at the same distance from the Sun.
Explanation:
Answer:
See explanation.
Explanation:
Hello there!
In this case, according to the described chemical reaction, we first write the corresponding equation to obtain:

Thus, we proceed as follows:
Part 1 of 3: here, since the molar mass of silver and copper (II) nitrate are 107.87 and 187.55 g/mol respectively, and the mole ratio of the former to the latter is 2:1, we can set up the following stoichiometric expression:

Part 2 of 3: here, the molar mass of copper is 63.55 g/mol and the mole ratio of silver to copper is 2:1, the mass of the former that was used to start the reaction was:

Part 3 of 3: here, the molar mass of silver nitrate is 169.87 g/mol and their mole ratio 2:2, thus, the mass of initial silver nitrate is:

Best regards!