Answer:
1s22s22p6: Neon (Ne)
1s22s22p63s23p3: Phosphorous (P)
1s22s22p63s23p64s1: Potassium (K)
1s22s22p63s23p64s2(im not sure what 308 is supposed to be): Calcium (Ca)
1s22s22p63s23p64s23d104p65s24d3: there is no pure element that ends 4d3 that I know of so this can either be Zirconium(Zr) if it ends in 4d2 or Niobium (Nb) if it ends in 4d4
Explanation:
you can look at the periodic table and the trends to find the rough idea of where the electron configuration ends, there are helpful articles and images on these, i attached an image that may help. After that you can look at the atomic number to find the number of electrons for a pure element and use the electron subshell pattern thing to find the exact number
Answer: true
Explanation: Electrons orbit the nucleus of an atom the way that planets revolve around the Sun. The electrons are like the planets in the solar system. The sun is like the nucleus in the solar system. The answer to the question is true.
Answer:
F2 is the limiting reactant
27.6 grams of NaF is produced.
Explanation:
Balance the equation first.
2Na+ F2 ---> 2NaF
To find the limiting reactant, solve for how much NaF can be produced with Na and F2
12.5g F2 x (1 mole F2/ 38.00 grams F2)x (2 mole NaF/ 1 mole F2)
=0.658 moles NaF
16.2g Na x (1 mole Na/ 22.99 grams Na)x (2 mole NaF/ 2 mole Na)
=0.705 moles NaF
Since F2 produced the least NaF, F2 is the limiting reactant.
Now, to find how much NaF there is, use the moles solved above with F2 as the limiting reactant.
0.658 moles NaF x (41.99 grams NaF/ 1 mole NaF)= 27.6 moles NaF
27.6 moles of NaF would be theoretically produced.
Energy required=mass*specific heat*temperature change
=10*4.184*57.2
=2393.248j
=2.39*10^3