Answer:
<em>155.80rad/s</em>
Explanation:
Using the equation of motion to find the angular acceleration:
![\omega_f = \omega_i + \alpha t](https://tex.z-dn.net/?f=%5Comega_f%20%3D%20%5Comega_i%20%2B%20%5Calpha%20t)
is the final angular velocity in rad/s
is the initial angular velocity in rad/s
is the angular acceleration
t is the time taken
Given the following
![\omega_f = 6100rpm](https://tex.z-dn.net/?f=%5Comega_f%20%3D%206100rpm)
Time = 4.1secs
Convert the angular velocity to rad/s
1rpm = 0.10472rad/s
6100rpm = x
x = 6100 * 0.10472
x = 638.792rad/s
Get the angular acceleration:
Recall that:
![\omega_f = \omega_i + \alpha t](https://tex.z-dn.net/?f=%5Comega_f%20%3D%20%5Comega_i%20%2B%20%5Calpha%20t)
638.792 = 0 + ∝(4.1)
4.1∝ = 638.792
∝ = 638.792/4.1
∝ = 155.80rad/s
<em>Hence the angular acceleration as the blades slow down is 155.80rad/s</em>
D. to be structural material
Answer:
5.78amps
Explanation:
Given data
Time t= 57 seconds
Charge Q= 330C
Current I= ??
The expression for the electric current is given as
Q= It
Substituting we have
330= I*57
I= 330/57
I=5.78 amps
Hence the current is 5.78amps