Answer:
54 km/h
Explanation:
given,
speed of the biker = 36 Km/h
time = 10 s
acceleration = 0.5 m/s²
speed at which it crosses the finish line = ?
v = 36 x 0.278 = 10 m/s
using equation of motion
v = u + a t
v = 10 + 0.5 x 10
v = 15 m/s
v = 15 x 3.6 = 54 km/hr
speed at which the biker crosses the finish line is equal to 54 km/h
Answer:
the answer is at the BOTTOM OF THEIR QUESTION
Explanation:
IT IS CORRECT BTW
<span>Germanium
To determine which melts first, convert their melting temperatures so they're both expressed on same scale. It doesn't matter what scale you use, Kelvin, Celsius, of Fahrenheit. Just as long as it's the same scale for everything. Since we already have one substance expressed in Kelvin and since it's easy to convert from Celsius to Kelvin, I'll use Kelvin. So convert the melting point from Celsius to Kelvin for Gold by adding 273.15
1064 + 273.15 = 1337.15 K
So Germanium melts at 1210K and Gold melts at 1337.15K. Germanium has the lower melting point, so it melts first.</span>
Answer:
The magnitude of the applied torque is
(e) is correct option.
Explanation:
Given that,
Mass of object = 3 kg
Radius of gyration = 0.2 m
Angular acceleration = 0.5 rad/s²
We need to calculate the applied torque
Using formula of torque
Here, I = mk²
Put the value into the formula
Hence, The magnitude of the applied torque is