Some call it "air resistance", and others just call it "drag".
The average dissipated power in a resistor in a ac circuit is:

where R is the resistance, and

is the root mean square current, defined as

where

is the peak value of the current. Substituting the second formula into the first one, we find

and if we re-arrange this formula and use the data of the problem, we can find the value of the peak current I0:
The Asthenosphere is where the convection currents in the Earth occor
<h2>
Answer:</h2>
143μH
<h2>
Explanation:</h2>
The inductance (L) of a coil wire (e.g solenoid) is given by;
L = μ₀N²A / l --------------(i)
Where;
l = the length of the solenoid
A = cross-sectional area of the solenoid
N= number of turns of the solenoid
μ₀ = permeability of free space = 4π x 10⁻⁷ N/A²
<em>From the question;</em>
N = 183 turns
l = 2.09cm = 0.0209m
diameter, d = 9.49mm = 0.00949m
<em>But;</em>
A = π d² / 4 [Take π = 3.142 and substitute d = 0.00949m]
A = 3.142 x 0.00949² / 4
A = 7.1 x 10⁻⁵m²
<em>Substitute these values into equation (i) as follows;</em>
L = 4π x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209 [Take π = 3.142]
L = 4(3.142) x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209
L = 143 x 10⁻⁶ H
L = 143 μH
Therefore the inductance in microhenrys of the Tarik's solenoid is 143