a = 3.09 m/s²
<h3>Explanation</h3>
This question doesn't tell anything about how long it took for the car to go through 105 meters. As a result, the <em>timeless </em>suvat equation is likely what you need for this question.
In the <em>timeless</em> suvat equation,

where
is the acceleration of the car;
is the <em>final</em> velocity of the car;
is the <em>initial</em> velocity of the car; and
is the displacement of the car.
Note that <em>v</em> and <em>u</em> are velocities. Make sure that you include their signs in the calculation.
In this question,
Apply the <em>timeless</em> suvat equation:
.
The value of
is greater than zero, which is reasonable. Velocity of the car is negative, meaning that the car is moving backward. The car now moves to the back at a slower speed. Effectively it accelerates to the front. Its acceleration shall thus be positive.
0.77 m/s2 directed 35° south of west
net force = (-17,-12)
net force = mass * acceleration
(-17,-12) = 27 * (x-acceleration,y-acceleration)
(x-acceleration,y-acceleration) = (-17/27,-12/27) = (-0.629629629..., -0.444...)
angle of acceleration = tan^-1 (-0.444.../-0.629629...) = 35.21759 degrees below negative x-axis.
magnitude of acceleration = sqrt((-0.629629...)^2 + (-0.444...)^2) = 0.77069 (5dp)
Through a dam... hope this helps:)
Explanation:
The 11Ω, 22Ω, and 33Ω resistors are in parallel. That combination is in series with the 4Ω and 10Ω resistors.
The net resistance is:
R = 4Ω + 10Ω + 1/(1/11Ω + 1/22Ω + 1/33Ω)
R = 20Ω
Using Ohm's law, we can find the current going through the 4Ω and 10Ω resistors:
V = IR
120 V = I (20Ω)
I = 6 A
So the voltage drops are:
V = (4Ω) (6A) = 24 V
V = (10Ω) (6A) = 60 V
That means the voltage drop across the 11Ω, 22Ω, and 33Ω resistors is:
V = 120 V − 24 V − 60 V
V = 36 V
So the currents are:
I = 36 V / 11 Ω = 3.27 A
I = 36 V / 22 Ω = 1.64 A
I = 36 V / 33 Ω = 1.09 A
If we wanted to, we could also show this using Kirchhoff's laws.