Complete Question
A small metal sphere, carrying a net charge q1=−2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q2= -8μC and mass 1.50g, is projected toward q1. When the two spheres are 0.80m apart, q2 is moving toward q1 with speed 20ms−1. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.The speed of q2 when the spheres are 0.400m apart is.
Answer:
The value 
Explanation:
From the question we are told that
The charge on the first sphere is 
The charge on the second sphere is 
The mass of the second charge is 
The distance apart is 
The speed of the second sphere is 
Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here KE is the kinetic energy which is mathematically represented as

substituting value


And U is the potential energy which is mathematically represented as

substituting values


So


Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here
is the kinetic energy which is mathematically represented as

substituting value


And
is the potential energy which is mathematically represented as

substituting values


From the law of energy conservation

So


Speed is the rate of change <span>of distance.</span>
Answer : When we increase the temperature of an exothermic reaction the equilibrium will shift to the left direction i.e, towards the reactant.
Explanation :
Le-Chatelier's principle : This principle states that if any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
As the given reaction is an exothermic reaction in which the heat is released during a chemical reaction. That means the temperature is decreased on the reactant side.
For an exothermic reaction, heat is released during a chemical reaction and is written on the product side.

If the temperature is increases in the equilibrium then the equilibrium will shift in the direction where, temperature is getting decreased. Thus, the reaction will shift to the left direction i.e, towards the reactant.
Hence, when we increase the temperature of an exothermic reaction the equilibrium will shift to the left direction i.e, towards the reactant.
48 M to get the answer add the area of the triangle and rectangle under the line