Answer:
Explanation:
Potential energy is the energy of a body due to is virtue of rest.
Potential energy is given as mgh
g is a constant and it is 9.81m/s²
And also the mass of the body is given as 1.3kg
Now the height of the body is
He took a book to a storey building of height 26m
He still holds the book 151 cm (1.51m) above the house.
The house is on an altitude of 1609m from the sea level.
Total Ug with out the sea level is
Ug=mgh
Ug=1.3 × 9.81 ×(26+1.51)
Ug=350.84J
Then, the potential energy due to the sea level is given as
Ug=mgh
Where g = 1/6371 m/s²
Therefore
Ug=mgh
Ug=1.3 × 1/6371 ×1609
Ug=0.328J
Total energy = 0.328+350.84
Ug=351.17J
Answer:
1070 Hz
Explanation:
First, I should point out there might be a typo in the question or the question has inconsistent values. If the tube is 40 cm long, standing waves cannot be produced at 42.5 cm and 58.5 cm lengths. I assume the length is more than the value in the question then. Under this assumption, we proceed as below:
The insert in the tube creates a closed pipe with one end open and the other closed. For a closed pipe, the difference between successive resonances is a half wavelength
.
Hence, we have

.
The speed of a wave is the product of its wavelength and its frequency.



Answer:
Amplitude = 0.02m
Frequency = 640 Hz
Wavelength, λ = 0.5m
v = 320 m/s
Explanation:
Given the wave equation :
y=0.02 sin2π/0.5 (320t - x) where x and y are in
meters and t is in second
Comparing the above relation with the general wave equation :
y(x, t) = Asin2π/λ(wt - kx)
The amplitude, A = 0.02
From the equation :
2π/0.5 = 2π/λ
λ = 0.5 m
320t = vt
Hence, v = 320 m/s
Recall :
v = fλ
320 = f * 0.5
f = 320 / 0.5
f = 640 Hz
Answer:
Maximum height attained by the model rocket is 2172.87 m
Explanation:
Given,
- Initial speed of the model rocket = u = 0
- acceleration of the model rocket =

- time during the acceleration = t = 2.30 s
We have to consider the whole motion into two parts
In first part the rocket is moving with an acceleration of a = 85.0
for the time t = 2.30 s before the fuel abruptly runs out.
Let
be the height attained by the rocket during this time intervel,

And Final velocity at that point be v

Now, in second part, after reaching the altitude of 224.825 m the fuel abruptly runs out. Therefore rocket is moving upward under the effect of gravitational acceleration,
Let '
' be the altitude attained by the rocket to reach at the maximum point after the rocket's fuel runs out,
At that insitant,
- initial velocity of the rocket = v = 195.5 m/s.
- a =

- Final velocity of the rocket at the maximum altitude =

From the kinematics,

Hence the maximum altitude attained by the rocket from the ground is

Answer: 18000 coulombs
Explanation:
Given that:
Current, I = 5.0A
Electric charge Q = ?
Time, T = 1 hour
(The SI unit of time is seconds. So, covert 1.0 hour to seconds)
If 1 hour = 60 minutes and 60 seconds = 1 minute
Then, 1.0 hour = (60 x 60)
= 3600 seconds
Since electric charge, Q = current x time
i.e Q = I x T
Q = 5.0 A x 3600 seconds
Q = 18000 coulombs
Thus, 18000 coulombs of charge flows through the lamp in this time.