Answer: A
Out of the screen
Explanation:
Using right hand rule, the magnetic force is perpendicular to the plane form by the magnetic field of a charged particle and its speed. Which will be into the screen.
But the negative charged particle moves in the opposite direction of the positive charged particle. Therefore, the magnetic force direction will be out of the screen
As we know by the first law of thermodynamics

here we know that
Q = heat given to the system

W = work done by the system
now here we can say


now we can say that heat will be given as

now here we can say that Jin does the error in his first step while calculation of change in internal energy as he had to subtract it while he added the two energy
So best describe Jin's Error is
<em>B )For step 1, he should have subtracted 78 J from 180 J to find the change in internal energy. </em>
On a similar problem wherein instead of 480 g, a 650 gram of bar is used:
Angular momentum L = Iω, where
<span>I = the moment of inertia about the axis of rotation, which for a long thin uniform rod rotating about its center as depicted in the diagram would be 1/12mℓ², where m is the mass of the rod and ℓ is its length. The mass of this particular rod is not given but the length of 2 meters is. The moment of inertia is therefore </span>
<span>I = 1/12m*2² = 1/3m kg*m² </span>
<span>The angular momentum ω = 2πf, where f is the frequency of rotation. If the angular momentum is to be in SI units, this frequency must be in revolutions per second. 120 rpm is 2 rev/s, so </span>
<span>ω = 2π * 2 rev/s = 4π s^(-1) </span>
<span>The angular momentum would therefore be </span>
<span>L = Iω </span>
<span>= 1/3m * 4π </span>
<span>= 4/3πm kg*m²/s, where m is the rod's mass in kg. </span>
<span>The direction of the angular momentum vector - pseudovector, actually - would be straight out of the diagram toward the viewer. </span>
<span>Edit: 650 g = 0.650 kg, so </span>
<span>L = 4/3π(0.650) kg*m²/s </span>
<span>≈ 2.72 kg*m²/s</span>
Answer:
r = 4.44 m
Explanation:
For this exercise we use the Archimedes principle, which states that the buoyant force is equal to the weight of the dislodged fluid
B = ρ g V
Now let's use Newton's equilibrium relationship
B - W = 0
B = W
The weight of the system is the weight of the man and his accessories (W₁) plus the material weight of the ball (W)
σ = W / A
W = σ A
The area of a sphere is
A = 4π r²
W = W₁ + σ 4π r²
The volume of a sphere is
V = 4/3 π r³
Let's replace
ρ g 4/3 π r³ = W₁ + σ 4π r²
If we use the ideal gas equation
P V = n RT
P = ρ RT
ρ = P / RT
P / RT g 4/3 π r³ - σ 4 π r² = W₁
r² 4π (P/3RT r - σ) = W₁
Let's replace the values
r² 4π (1.01 10⁵ / (3 8.314 (70 + 273)) r - 0.060) = 13000
r² (11.81 r -0.060) = 13000 / 4pi
r² (11.81 r - 0.060) = 1034.51
As the independent term is very small we can despise it, to find the solution
r = 4.44 m