Answer:
1.99 x 10⁻¹⁸J
Explanation:
Given parameters:
Frequency of the wave = 3 x 10¹⁵Hz
Unknown:
Energy of the photon = ?
Solution:
To solve this problem, we use the expression below;
E = hf
Where E is the energy, h is the Planck's constant and f is the frequency
Now insert the parameters and solve for E;
E = 6.63 x 10⁻³⁴ x 3 x 10¹⁵ = 19.9 x 10⁻¹⁹J or 1.99 x 10⁻¹⁸J
For part of our orbit the northern half of Earth is tilted toward the Sun. This is summer in the northern hemisphere; there are longer periods of daylight, the Sun is higher in the sky, and the Sun's rays strike the surface more directly, giving us warmer temperatures.
<span><span>When water vapor condenses, 2260 joules/gram heat energy will be released into the atmosphere.
To add, </span>heat energy<span> <span>(or </span>thermal energy<span> or simply </span>heat) is defined as a form of energy<span> which transfers among particles in a substance (or system) by means of kinetic </span>energy<span> of those particles. In other words, under kinetic theory, the </span>heat<span> is transferred by particles bouncing into each other.</span></span></span>
Answer:
O ice melts at 0°C that is the answer