Complete Question
A sample of aluminum, which has a specific heat capacity of 0.897 JB loc ! is put into a calorimeter (see sketch at right) that contains 200.0 g of water. The aluminum sample starts off at 85.6 °C and the temperature of the water starts off at 16.0 °C. When the temperature of the water stops changing it's 20.1 °C. The pressure remains constant at 1 atm. Calculate the mass of the aluminum sample.
Answer:

Explanation:
From the question we are told that:
Heat Capacity 
Mass of water 
Initial Temperature of Aluminium 
Initial Temperature of Water 
Final Temperature of Water 
Generally
Heat loss=Heat Gain
Therefore


Answer:
Option A.
2Na + 2H2O —> 2NaOH + H2
Explanation:
To know which option is correct, we shall do a head count of the number of atoms present on both side to see which of them is balanced. This is illustrated below below:
For Option A:
2Na + 2H2O —> 2NaOH + H2
Reactant >>>>>>> Product
2 Na >>>>>>>>>>> 2 Na
4 H >>>>>>>>>>>> 4 H
2 O >>>>>>>>>>>> 2 O
Thus, the above equation is balanced.
For Option B:
2Na + 2H2O —> NaOH + H2
Reactant >>>>>>> Product
2 Na >>>>>>>>>>> 1 Na
4 H >>>>>>>>>>>> 3 H
2 O >>>>>>>>>>>> 1 O
Thus, the above equation is not balanced.
For Option C:
2Na + H2O —> 2NaOH + H2
Reactant >>>>>>> Product
2 Na >>>>>>>>>>> 2 Na
2 H >>>>>>>>>>>> 4 H
1 O >>>>>>>>>>>> 2 O
Thus, the above equation is not balanced.
For Option D:
Na + 2H2O —> NaOH + 2H2
Reactant >>>>>>> Product
1 Na >>>>>>>>>>> 1 Na
4 H >>>>>>>>>>>> 5 H
2 O >>>>>>>>>>>> 1 O
Thus, the above equation is not balanced.
From the illustrations made above, only option A is balanced.
Answer:
9.6 moles O2
Explanation:
I'll assume it is 345 grams, not gratis, of water. Hydrogen's molar mass is 1.01, not 101.
The molar mass of water is 18.0 grams/mole.
Therefore: (345g)/(18.0 g/mole) = 19.17 or 19.2 moles water (3 sig figs).
The balanced equation states that: 2H20 ⇒ 2H2 +02
It promises that we'll get 1 mole of oxygen for every 2 moles of H2O, a molar ratio of 1/2.
get (1 mole O2/2 moles H2O)*(19.2 moles H2O) or 9.6 moles O2