<span>1.02x10^2 ml
Since molarity is defined as moles per liter, the product of the molarity and volume will remain constant as mole solvent is added. So let's set up an equality to express this
m0*v0 = m1*v1
where
m0, v0 = molarity and volume of original solution
m1, m1 = molarity and volume of final solution.
Solve for v0, then substitute the known values and calculate:
m0*v0 = m1*v1
v0 = (1.75 M * 500 ml)/8.61 M
v0 = (1.75 M * 500 ml)/8.61 M
V0 = 101.6260163
Rounding to 3 significant figures gives 102 ml.
So the original volume of the 8.61 M H2SO4 solution was 102 ml or 1.02x10^2 ml.</span>
Answer:
1.86% NH₃
Explanation:
The reaction that takes place is:
- HCl(aq) + NH₃(aq) → NH₄Cl(aq)
We <u>calculate the moles of HCl that reacted</u>, using the volume used and the concentration:
- 32.27 mL ⇒ 32.27/1000 = 0.03227 L
- 0.1080 M * 0.03227 L = 3.4852x10⁻³ mol HCl
The moles of HCl are equal to the moles of NH₃, so now we <u>calculate the mass of NH₃ that was titrated</u>, using its molecular weight:
- 3.4852x10⁻³ mol NH₃ * 17 g/mol = 0.0592 g NH₃
The weight percent NH₃ in the aliquot (and thus in the diluted sample) is:
- 0.0592 / 12.949 * 100% = 0.4575%
Now we <u>calculate the total mass of NH₃ in the diluted sample</u>:
Diluted sample total mass = Aqueous waste Mass + Water mass = 23.495 + 72.311 = 95.806 g
- 0.4575% * 95.806 g = 0.4383 g NH₃
Finally we calculate the weight percent NH₃ in the original sample of aqueous waste:
- 0.4383 g NH₃ / 23.495 g * 100% = 1.86% NH₃
Answer:
a tropical strom is when theres a lot of rain and it almost developed into a hurricane and a thunderstorm is rain with lightning and thunder but not that bad like a tropical storm and a tornado is when there is a huge gust of win that is formed in a circle like shape and could cause damage to homes
Explanation: