Momentum is a vector quantity, and is always conserved. Whenever a collision occurs between two objects, the objects behave under the principle of conservation of momentum. Therefore, if an object moves in the direction opposite to its original direction after a collision, then this indicates that the momentum of the colliding object was greater than the object under consideration.
Any substance that contains starch turns blue-black in presence of <u>iodine solution.</u>
Answer:
, the minus meaning west.
Explanation:
We know that linear momentum must be conserved, so it will be the same before (
) and after (
) the explosion. We will take the east direction as positive.
Before the explosion we have
.
After the explosion we have pieces 1 and 2, so
.
These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.
Since we know momentum must be conserved we have:

Which means (since we want
and
):

So for our values we have:

Answer:
D
friction acts in the opposite direction of motion but does not affect the motion of the object
Answer:
buoyant force on the block due to the water= 10 N
Explanation:
We know that
buoyant force(F_B) on a block= weight of the block in air (actual weight) - weight of block in water.
Given:
A block of metal weighs 40 N in air and 30 N in water.
F_B = 40-30= 10 N
therefore, buoyant force on the block due to the water= 10 N