Answer:
17640J
Explanation:
Give mass m= 60kg
Height h =30m
Since the student is standing on the edge of a cliff , acceleration due to gravity g is 9.8m/s^2
The student’s gravitational potential energy can be found by the formula
mgh
That’s 60 x 9.8 x 30
= 17640J
Answer;
By using kepler's 3rd law we find that;
-A year on Earth is shorter than a year on Saturn.
Explanation;
-Kepler’s 3rd law states that the square of a planet’s orbital period is proportional to the cube of its average distance from the Sun (semi-major axis), which tells us that more distant planets move more slowly in their orbits.
-In other words, if you square the 'year' of each planet, and divide it by the cube of its distance to the Sun, you get the same number, for all planets. The law captures the relationship between the distance of planets from the Sun, and their orbital periods.
Answer:
<h2>17.1 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question
3800 g = 3.8 kg
We have
force = 3.8 × 4.5
We have the final answer as
<h3>17.1 N</h3>
Hope this helps you
Answer:
1.718 N , attractive
Explanation:
r = 0.66 m, n = 5.7 x 10^13
q1 = 5.7 x 10^13 x 1.6 x 10^-19 = 9.12 x 10^-6 C
q2 = - 5.7 x 10^13 x 1.6 x 10^-19 = - 9.12 x 10^-6 C
F = K q1 q2 / r^2
F = 9 x 10^9 x 9.12 x 10^-6 x 9.12 x 10^-6 / (0.66)^2
F = 1.718 N
As both the charges are opposite in nature, so the force between them is attractive.