Answer:
563.86 N
Explanation:
We know the buoyant force F = weight of air displaced by the balloon.
F = ρgV where ρ = density of air = 1.29 kg/m³, g = acceleration due to gravity = 9.8 m/s² and V = volume of balloon = 4πr/3 (since it is a sphere) where r = radius of balloon = 2.20 m
So, F = ρgV = ρg4πr³/3
substituting the values of the variables into the equation, we have
F = 1.29 kg/m³ × 9.8 m/s² × 4π × (2.20 m)³/3
= 1691.58 N/3
= 563.86 N
Because a lot of people live along the fault line and there would be lots of death and much property damage.
The amplitude of a sound<span> wave </span>determines<span> its </span>loudness<span> or volume. A larger amplitude means a louder </span>sound<span>, and a smaller amplitude means a softer </span><span>sound</span>
Answer:
699.67ft
Explanation:
We are given with,
- α = 1.2×10⁻⁵ / °C
- L₀ = 700 ft
- ΔT = -10°C − 30°C = -40°C
Now, We have to find ΔL:
- ΔL = (1.2×10⁻⁵ / °C) (700 ft) (-40°C)
- ΔL = −0.336
Rounded to two significant figures, the change in length is −0.33ft.
<u>Therefore, the final length is approximately 700 ft − 0.33 ft = 699.67ft</u>.