Si units or Systeme' de Internationale' is a widely adopted unit system in measuring basic and derived dimensions In this case, the SI units here are kilograms, meter and seconds. Pounds is an English unit. mass is the measure of <span>how much matter an object contains, hence the answer is A. 43 kg.</span>
Answer:
In physics the standard unit of weight is Newton, and the standard unit of mass is the kilogram. On Earth, a 1 kg object weighs 9.8 N, so to find the weight of an object in N simply multiply the mass by 9.8 N. Or, to find the mass in kg, divide the weight by 9.8 N.
Explanation:
<em><u>Radhe</u></em><em><u> </u></em><em><u>Radhe</u></em><em><u>❤</u></em>
Answer:
A. Geocentric: This model is Earth Centered
. Retrograde motion is explained by epicycles
.
B. Heliocentric: This model is Sun centered. Retrograde motion is explained by the orbital speeds of planets
C. Both geocentric and heliocentric: Epicycles and deferents help explain planetary motion
. Planets move in circular orbits and with uniform motion
. The brightness of a planet increases when the planet is closest to Earth.
Explanation:
The principle of the Ptolemy's geocentric model was developed on the assumption that the center of the universe is the Earth. On the other hand, the principle of the Copernicus' heliocentric model was based on the assumption that the center of the universe is the sun. However, both models have a common ideology on uniform circular motion and epicycles.
Answer:
To create a second harmonic the rope must vibrate at the frequency of 3 Hz
Explanation:
First we find the fundamental frequency of the rope. The fundamental frequency is the frequency of the rope when it vibrates in only 1 loop. Therefore,
f₁ = v/2L
where,
v = speed of wave = 36 m/s
L = Length of rope = 12 m
f₁ = fundamental frequency
Therefore,
f₁ = (36 m/s)/2(12 m)
f₁ = 1.5 Hz
Now the frequency of nth harmonic is given in general, as:
fn = nf₁
where,
fn = frequency of nth harmonic
n = No. of Harmonic = 2
f₁ = fundamental frequency = 1.5 Hz
Therefore,
f₂ = (2)(1.5 Hz)
<u>f₂ = 3 Hz</u>