Answer:
Rate of heat is 45.1 kJ/min
Explanation:
Heat required to evaporate the water is given by
Q = mL
here we know that

now we have


now the power is defined as rate of energy



The answer is 21m because the motion is in one dimension with constant acceleration.
The initial velocity is 0, because it started from rest, the acceleration <span>ax</span> is <span>4.7<span>m<span>s2</span></span></span>, and the time t is <span>3.0s</span>
Plugging in our known values, we have
<span>Δx=<span>(0)</span><span>(3.0s)</span>+<span>12</span><span>(4.7<span>m<span>s2</span></span>)</span><span><span>(3.0s)</span>2</span>=<span>21<span>m</span></span></span>
Answer:
6.77 m/s
Explanation:
First, in the x direction:
Given:
Δx = 3.17 m
v₀ = v cos 30.8° = 0.859 v
a = 0 m/s²
Δx = v₀ t + ½ at²
(3.17 m) = (0.859 v) t + ½ (0 m/s²) t²
3.17 = 0.859 v t
3.69 = v t
Next, in the y direction:
Given:
Δy = 0.432 m
v₀ = v sin 30.8° = 0.512 v
a = -9.81 m/s²
Δy = v₀ t + ½ at²
(0.432 m) = (0.512 v) t + ½ (-9.81 m/s²) t²
0.432 = 0.512 v t − 4.905 t²
Two equations, two variables. Solve for t in the first equation and substitute into the second equation:
t = 3.69 / v
0.432 = 0.512 v (3.69 / v) − 4.905 (3.69 / v)²
0.432 = 1.89 − 66.8 / v²
66.8 / v² = 1.458
v² = 45.8
v = 6.77
Answer:
y becomes doubled.
Explanation:
If;
y =
what is the state of y when x is halved;
the given expression is an inverse relationship. When y increases, x is supposed to decrease and vice versa.
if x is halved; x =
=
Now compare :
:
we see that y becomes doubled
Answer:
pulling force
Explanation:
because the person is pulling that cart.