The number of ways of the books can be arranged are illustrations of permutations.
- When the books are arranged in any order, the number of arrangements is 3628800
- When the mathematics book must not be together, the number of arrangements is 2903040
- When the novels must be together, and the chemistry books must be together, the number of arrangements is 17280
- When the mathematics books must be together, and the novels must not be together, the number of arrangements is 302400
The given parameters are:
![\mathbf{Novels = 3}](https://tex.z-dn.net/?f=%5Cmathbf%7BNovels%20%3D%203%7D)
![\mathbf{Mathematics = 2}](https://tex.z-dn.net/?f=%5Cmathbf%7BMathematics%20%3D%202%7D)
![\mathbf{Chemistry = 5}](https://tex.z-dn.net/?f=%5Cmathbf%7BChemistry%20%3D%205%7D)
<u />
<u>(a) The books in any order</u>
First, we calculate the total number of books
![\mathbf{n = Novels + Mathematics + Chemistry}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn%20%3D%20Novels%20%2B%20Mathematics%20%2B%20Chemistry%7D)
![\mathbf{n = 3 + 2 + 5}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn%20%3D%203%20%2B%202%20%2B%20%205%7D)
![\mathbf{n = 10}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn%20%3D%2010%7D)
The number of arrangement is n!:
So, we have:
![\mathbf{n! = 10!}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn%21%20%3D%2010%21%7D)
![\mathbf{n! = 3628800}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn%21%20%3D%203628800%7D)
<u>(b) The mathematics book, not together</u>
There are 2 mathematics books.
If the mathematics books, must be together
The number of arrangements is:
![\mathbf{Maths\ together = 2 \times 9!}](https://tex.z-dn.net/?f=%5Cmathbf%7BMaths%5C%20together%20%3D%202%20%5Ctimes%209%21%7D)
Using the complement rule, we have:
![\mathbf{Maths\ not\ together = Total - Maths\ together}](https://tex.z-dn.net/?f=%5Cmathbf%7BMaths%5C%20not%5C%20together%20%3D%20Total%20-%20Maths%5C%20together%7D)
This gives
![\mathbf{Maths\ not\ together = 3628800 - 2 \times 9!}](https://tex.z-dn.net/?f=%5Cmathbf%7BMaths%5C%20not%5C%20together%20%3D%203628800%20-%202%20%5Ctimes%209%21%7D)
![\mathbf{Maths\ not\ together = 2903040}](https://tex.z-dn.net/?f=%5Cmathbf%7BMaths%5C%20not%5C%20together%20%3D%202903040%7D)
<u>(c) The novels must be together and the chemistry books, together</u>
We have:
![\mathbf{Novels = 3}](https://tex.z-dn.net/?f=%5Cmathbf%7BNovels%20%3D%203%7D)
![\mathbf{Chemistry = 5}](https://tex.z-dn.net/?f=%5Cmathbf%7BChemistry%20%3D%205%7D)
First, arrange the novels in:
![\mathbf{Novels = 3!\ ways}](https://tex.z-dn.net/?f=%5Cmathbf%7BNovels%20%3D%203%21%5C%20ways%7D)
Next, arrange the chemistry books in:
![\mathbf{Chemistry = 5!\ ways}](https://tex.z-dn.net/?f=%5Cmathbf%7BChemistry%20%3D%205%21%5C%20ways%7D)
Now, the 5 chemistry books will be taken as 1; the novels will also be taken as 1.
Literally, the number of books now is:
![\mathbf{n =Mathematics + 1 + 1}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn%20%3DMathematics%20%2B%201%20%2B%201%7D)
![\mathbf{n =2 + 1 + 1}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn%20%3D2%20%2B%201%20%2B%201%7D)
![\mathbf{n =4}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn%20%3D4%7D)
So, the number of arrangements is:
![\mathbf{Arrangements = n! \times 3! \times 5!}](https://tex.z-dn.net/?f=%5Cmathbf%7BArrangements%20%3D%20n%21%20%5Ctimes%203%21%20%5Ctimes%205%21%7D)
![\mathbf{Arrangements = 4! \times 3! \times 5!}](https://tex.z-dn.net/?f=%5Cmathbf%7BArrangements%20%3D%204%21%20%5Ctimes%203%21%20%5Ctimes%205%21%7D)
![\mathbf{Arrangements = 17280}](https://tex.z-dn.net/?f=%5Cmathbf%7BArrangements%20%3D%2017280%7D)
<u>(d) The mathematics must be together and the chemistry books, not together</u>
We have:
![\mathbf{Mathematics = 2}](https://tex.z-dn.net/?f=%5Cmathbf%7BMathematics%20%3D%202%7D)
![\mathbf{Novels = 3}](https://tex.z-dn.net/?f=%5Cmathbf%7BNovels%20%3D%203%7D)
![\mathbf{Chemistry = 5}](https://tex.z-dn.net/?f=%5Cmathbf%7BChemistry%20%3D%205%7D)
First, arrange the mathematics in:
![\mathbf{Mathematics = 2!}](https://tex.z-dn.net/?f=%5Cmathbf%7BMathematics%20%3D%202%21%7D)
Literally, the number of chemistry and mathematics now is:
![\mathbf{n =Chemistry + 1}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn%20%3DChemistry%20%2B%201%7D)
![\mathbf{n =5 + 1}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn%20%3D5%20%2B%201%7D)
![\mathbf{n =6}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn%20%3D6%7D)
So, the number of arrangements of these books is:
![\mathbf{Arrangements = n! \times 2!}](https://tex.z-dn.net/?f=%5Cmathbf%7BArrangements%20%3D%20n%21%20%5Ctimes%202%21%7D)
![\mathbf{Arrangements = 6! \times 2!}](https://tex.z-dn.net/?f=%5Cmathbf%7BArrangements%20%3D%206%21%20%5Ctimes%202%21%7D)
Now, there are 7 spaces between the chemistry and mathematics books.
For the 3 novels not to be together, the number of arrangement is:
![\mathbf{Arrangements = ^7P_3}](https://tex.z-dn.net/?f=%5Cmathbf%7BArrangements%20%3D%20%5E7P_3%7D)
So, the total arrangement is:
![\mathbf{Total = 6! \times 2!\times ^7P_3}](https://tex.z-dn.net/?f=%5Cmathbf%7BTotal%20%3D%206%21%20%5Ctimes%202%21%5Ctimes%20%5E7P_3%7D)
![\mathbf{Total = 6! \times 2!\times 210}](https://tex.z-dn.net/?f=%5Cmathbf%7BTotal%20%3D%206%21%20%5Ctimes%202%21%5Ctimes%20210%7D)
![\mathbf{Total = 302400}](https://tex.z-dn.net/?f=%5Cmathbf%7BTotal%20%3D%20302400%7D)
Read more about permutations at:
brainly.com/question/1216161