1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna11 [192]
3 years ago
9

8SnCl4 How many atoms

Chemistry
1 answer:
Veronika [31]3 years ago
8 0

Answer:

i think i like 14 or 8 atom

Explanation:

You might be interested in
What happens to water once it reaches earths surface
AlladinOne [14]
When water reaches the surface, it goes through a specific process called, the water cycle.
~Hope this helped :)
4 0
4 years ago
Read 2 more answers
What might be useful for adding solids to a tube
vagabundo [1.1K]
C funnel because the funnel would have a large enough entrance to put a solid through
7 0
4 years ago
Find the pH during the titration of 20.00 mL of 0.1000 M butanoic acid, CH3CH2CH2COOH (K a = 1.54 × 10 − 5), with 0.1000 M NaOH
Zina [86]

Here is the full question

Find the pH during the titration of 20.00 mL of 0.1000 M butanoic acid, CH3CH2CH2COOH (K a = 1.54 × 10 − 5), with 0.1000 M NaOH solution after the following additions of titrant (total volume of added base given):

a) 10.00 mL  

pH   = <u>                        </u>

b) 20.10 mL

pH   = <u>                        </u>

c) 25.00 mL

pH   = <u>                        </u>

<u />

Answer:

pH = 4.81

pH = 10.40

pH = 12.04

Explanation:

a)

Number of moles of butanoic acid

= 20.00 \ mL * \frac{L}{1000 \ mL} * \frac{0.1000 \ mol}{ L}

= 0.002000 mol

Number of moles of NaOH added

= 10.00 \ mL * \frac{L}{1000 \ mL }* \frac{0.1000 \ mol }{L}

= 0.001000 mol

pKa of butanoic acid = - log Ka

= - log ( 1.54 × 10⁻⁵)

= 4.81

Equation for the reaction is expressed as follows:

CH₃CH₂CH₂COOH    +  OH⁻   ----->   CH₃CH₂COO⁻   +   H₂O

The ICE Table is expressed as follows:

                    CH₃CH₂CH₂COOH    +  OH⁻   ----->   CH₃CH₂COO⁻   +   H₂O

Initial                 0.002000                  0.001000               0

Change            - 0.001000                - 0.001000         + 0.001000  

Equilibrium         0.001000                         0                   0.001000

Total Volume = (20.00 + 10.00 ) mL

=  30.00 mL = 0.03000 L

Concentration of  [CH₃CH₂CH₂COOH] = \frac{0.001000 \ mol}{ 0.03000 \ L }

= 0.03333 M

Concentration of [CH₃CH₂COO⁻]  = \frac{0.001000 \ mol}{ 0.03000 \ L}

= 0.03333 M

By Henderson- Hasselbalch equation

pH = pKa + log \frac{conjugate \ base}{acid }

pH = pKa + log \frac{CH_3CH_2CH_2COO^-}{CH_3CH_2CH_2COOH}

PH = 4.81  + log \frac{0.03333}{0.03333}

pH = 4.81

Thus; the pH of the resulted buffer solution after 10.00 mL of NaOH was added = 4.81

b )

After the equivalence point, we all know that the pH of the solution will now definitely be determined by the excess H⁺

Number of moles of butanoic acid

= 20.00 \ mL * \frac{L}{1000 \ mL} * \frac{0.1000 \ mol}{ L}

= 0.002000 mol

Number of moles of NaOH added

= 20.10 \ mL * \frac{L}{1000 \ mL} * \frac{0.1000 \ mol}{ L}

= 0.002010 mol

Following the previous equation of reaction , The ICE Table for this process is as follows:

                    CH₃CH₂CH₂COOH    +  OH⁻   ----->   CH₃CH₂COO⁻   +   H₂O

Initial                 0.002000                  0.002010               0

Change           - 0.002000                -0.002000         + 0.002000  

Equilibrium         0                                0.000010            0.002000

We can see here that the base is present in excess;

NOW, number of moles of base present in excess

= ( 0.002010 - 0.002000) mol

= 0.000010 mol

Total Volume = (20.00 + 20.10 ) mL

= 40.10 mL × \frac{1 \ L}{1000 \ mL }

= 0.04010 L

Concentration of acid [OH⁻] = \frac{0.000010 \ mol}{0.04010 \ L }

= 2.494*10^{-4} M

Using the ionic  product of water:

[H_3O^+] = \frac{K \omega }{[OH^-]}

where

K \omega = 10^{-14}

[H_3O^+] = \frac{1.0*10^{-14}}{2.494*10^{-14}}

= 4.0*10^{-11}M

pH = - log [H_3O^+}]

pH = - log [4.0*10^{-11}M]

pH = 10.40

Thus, the pH of the solution after the equivalence point = 10.40

c)

After the equivalence point, pH of the solution is determined by the excess H⁺.

Number of moles of butanoic acid

= 20.00 \ mL * \frac{L}{1000 \ mL} * \frac{0.1000 \ mol}{ L}

= 0.002000 mol

Number of moles of NaOH added

= 25.00 \ mL * \frac{L}{1000 \ mL} * \frac{0.1000 \ mol}{ L}

= 0.002500 mol

From our chemical equation; The ICE Table can be illustrated as follows:

                    CH₃CH₂CH₂COOH    +  OH⁻   ----->   CH₃CH₂COO⁻   +   H₂O

Initial                 0.002000                 0.002500               0

Change           - 0.002000                -0.002000           +0.002000  

Equilibrium         0                               0.000500            0.002000

Base is present in excess

Number of moles of base present in excess = [ 0.002500 - 0.002000] mol

= 0.000500 mol

Total Volume = ( 20.00 + 25.00 ) mL

= 45.00 mL

= 45.00 × \frac{1 \ L}{1000 \ mL }

= 0.04500 L

Concentration of acid [OH⁻] = \frac{0.0005000 \ mol}{ 0.04500 \ L }

= 0.01111 M

Using the ionic product of water [H_3O^+] = \frac{K \omega }{[OH^+]}

= \frac{1.0*10^{-14}}{0.01111}

= 9.0*10^{-13} M

pH = - log [H_3O^+}]

pH = - log [9.0*10^{-13}M]

pH = 12.04

Thus, the pH of the solution after the equivalence point = 12.04

4 0
3 years ago
Can someone help with this???
e-lub [12.9K]

Answer:

2Mg(s) +O₂(g) → 2MgO(s)

Explanation:

Mg(s) +O₂(g) → MgO(s)

When a chemical equation is balanced, the number of atoms of each element is equal on both sides of the arrow. We usually balance O and H last.

In this case, the number of Mg atoms is equal on both sides. Thus, let's move on to balance the O atoms. On the left side, there are 2 O atoms, while there is only 1 O atom on the left side. Thus, write a '2' in front of MgO.

Mg(s) +O₂(g) → 2MgO(s)

Now, the number of Mg atoms is not equal. Write a '2' in front of Mg to balance it.

2Mg(s) +O₂(g) → 2MgO(s)

The equation is now balanced with 2 Mg atoms and 2 O atoms on each side.

6 0
3 years ago
If f(x)=x^2 and g(x)=2x+3, what is f(g(x))
IgorC [24]

Answer:

\huge\boxed{f(g(x)) = 4x^2 + 12x + 9}

Explanation:

In its raw form, function notation essentially represents an equation with only one unknown variable, expressed in terms of another.  Thus, f(x) = x² + 7x can be expressed as

g(x) = 2x + 3

f(g(x)) = (2x + 3)²

f(g(x)) = 4x² + 12x + 9

Hope it helps :) and let me know if you want me to elaborate.

6 0
3 years ago
Read 2 more answers
Other questions:
  • In a cooking context, which of the following materials is the best heat conductor?
    10·1 answer
  • A peptide bond forms between_?
    5·1 answer
  • Which equation best represeents the balanced net ionic equation for the reaction that occurs wehn aqueous soluitons of litium ph
    8·1 answer
  • Which of the following best defines the molar mass of a substance?
    8·1 answer
  • Na2S+2AgNO3 = Ag2S + NaNO3 If 2.86g of Ag2S are actually produced by a reaction between an excess of Na2S and 4.27g of AgNO3 the
    9·1 answer
  • What is the term<br>chemistry​
    9·2 answers
  • 3 points
    12·1 answer
  • What is the mass of the zinc chloride?
    15·2 answers
  • What are things animals might do to survive?
    7·2 answers
  • If you add two protons to a nitrogen atom what would happen to it ?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!