Answer:
1.02mol
Explanation:
Using the general gas equation below;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
According to the information provided in this question,
P = 2.0 atm
V = 11.4L
T = 273K
n = ?
Using PV = nRT
n = PV/RT
n = 2 × 11.4/ 0.0821 × 273
n = 22.8/22.41
n = 1.017
n = 1.02mol
I had to look for the options and here is my answer:
The two requirements for nuclear fusion that are needed to be met in order for the elements hydrogen and helium fuse to make heavier elements are extremely high temperatures and density. Hope this helps.
The general equation for radioactive decay is;
N = N₀e^(-λt)
x - decay constant (λ) - rate of decay
t- time
N - amount remaining after t days , since we are calculating the half life, amount of time it takes for the substance to to be half its original value, its N₀/2
N₀ - amount initially present
substituting the values
N₀/2 = N₀e^(-0.081t)
0.5 = e^(-0.081t)
ln (0.5) = -0.081t
-0.693 = -0.081t
t = 0.693 / 0.081
= 8.55
half life of substance is 8.55 days
What are the answer choices?
Non metals and metollids in periodic tables are the same how this helps ;)