Based on the calculations, the angle through which the tire rotates is equal to 4.26 radians and 244.0 degrees.
<h3>How to calculate the angle?</h3>
In Physics, the distance covered by an object in circular motion can be calculated by using this formula:
S = rθ
<u>Where:</u>
- r is the radius of a circular path.
- θ is the angle measured in radians.
Substituting the given parameters into the formula, we have;
1.87 = 0.44 × θ
θ = 1.87/0.44
θ = 4.26 radians.
Next, we would convert this value in radians to degrees:
θ = 4.26 × 180/π
θ = 4.26 × 180/3.142
θ = 244.0 degrees.
Read more on radians here: brainly.com/question/19758686
#SPJ1
Answer:
The ratio of T2 to T1 is 1.0
Explanation:
The gravitational force exerted on each sphere by the sun is inversely proporational to the square of the distance between the sun and each of the spheres.
Provided that the two spheres have the same radius r, the pressure of solar radiation too, is inversely proportional to the square of the distance of each sphere from the sun.
Let F₁ and F₂ = gravitational force of the sun on the first and second sphere respectively
P₁ and P₂ = Pressure of solar radiation on the first and second sphere respectively
M = mass of the Sun
m = mass of the spheres, equal masses.
For the first sphere that is distance R from the sun.
F₁ = (GmM/R²)
P₁ = (k/R²)
T₁ = (F₁/P₁) = (GmM/k)
For the second sphere that is at a distance 2R from the sun
F₂ = [GmM/(2R)²] = (GmM/4R²)
P₂ = [k/(2R)²] = (k/4R²)
T₂ = (F₂/P₂) = (GmM/k)
(T₁/T₂) = (GmM/k) ÷ (GmM/k) = 1.0
Hope this Helps!!!
Answer:
To determine the minimum blade length, add 1" to the workpiece thickness. One type of material, and some materials can be cut by more than one type of blade. No matter the material, there's likely a jigsaw blade designed specifically for. Armed with the right blade, follow these pointers to make your work go (and cut) .
Explanation:
Answer:
A. El volumen
B. La densidad.
Explanation:
A derived quantity is defined as one that has to be calculated by using two or more other measurements.
Volume is a derived quantity because it requires one to use different measurements to determine it. For instance, in the case of a cube, the length, width and height of the cube are all needed to calculate volume.
Density is also a derived quantity because it needs both volume and mass for it to be calculated.