1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa86 [58]
3 years ago
13

A meteorologist plans to release a weather balloon from ground level, to be used for high-altitude atmospheric measurements. The

balloon is spherical, with a radius of 2.20 m, and filled with hydrogen. The total mass of the balloon (including the hydrogen within it) and the instruments it carries is 21.0 kg. The density of air at ground level is 1.29 kg/m3. (a) What is the magnitude of the buoyant force (in N) acting on the balloon, just after it is released from ground level
Physics
1 answer:
Slav-nsk [51]3 years ago
8 0

Answer:

563.86 N

Explanation:

We know the buoyant force F = weight of air displaced by the balloon.

F = ρgV where ρ = density of air = 1.29 kg/m³, g = acceleration due to gravity = 9.8 m/s² and V = volume of balloon = 4πr/3 (since it is a sphere) where r = radius of balloon = 2.20 m

So, F = ρgV = ρg4πr³/3

substituting the values of the variables into the equation, we have

F =  1.29 kg/m³ × 9.8 m/s² × 4π × (2.20 m)³/3

= 1691.58 N/3

= 563.86 N

You might be interested in
projectile motion of a particle of mass M with charge Q is projected with an initial speed V in a driection opposite to a unifor
SIZIF [17.4K]

Answer:

Range, R = MV²/2QE

Explanation:

The question deals with the projectile motion of a particle mass M with charge Q, having an initial speed V in a direction opposite to that of a uniform electric field.

Since we are dealing with projectile motion in an electric field, the unknown variable here, would be the range, R of the projectile. We note that the electric field opposes the motion of the particle thereby reducing its kinetic energy. The particle stops when it loses  all its kinetic energy due to the work done on it in opposing its motion by the electric field. From work-kinetic energy principles, work done on charge by electric field = loss in kinetic energy of mass.

So, [tex]QER = MV²/2{/tex} where R is the distance (range) the mass moves before it stops

Therefore {tex}R = MV²/2QE{/tex}

5 0
3 years ago
The distance between two stations is 1995 Km. How much time will it take to cover the distance at an average speed of 19KM/hour
Flura [38]
105 hours or 4.375 days
5 0
3 years ago
1.)Two objects, one of m=20,000 kg, and another of 12,500 kg, are placed at a distance of 5 meters apart. What is the force of g
Delvig [45]

1) 6.67\cdot 10^{-4} N

The force of gravitation between the two objects is given by:

F=G\frac{m_1 m_2}{r^2}

where

G=6.67\cdot 10^{-11} kg^{-1} m^{3} s^{-2} is the gravitational constant

m1 = 20,000 kg is the mass of the first object

m2 = 12,500 kg is the mass of the second object

r = 5 m is the distance between the two objects

Substituting the numbers inside the equation, we find

F=(6.67\cdot 10^{-11})\frac{(20,000 kg)(12,500 kg)}{(5 m)^2}=6.67\cdot 10^{-4} N


2)  2.7\cdot 10^{-3} N

From the formula in exercise 1), we see that the force is inversely proportional to the square of the distance:

F \sim \frac{1}{r^2}

this means that if we cut in a half the distance without changing the masses, the magnitude of the forces changes by a factor

F'\sim \frac{1}{(r/2)^2}=4 \frac{1}{r^2}=4F

So, the gravitational force increases by a factor 4. Therefore, the new force will be

F' = 4 F=4(6.67\cdot 10^{-4} N)=2.7\cdot 10^{-3} N


3)  12.5 Nm

The torque is equal to the product between the magnitude of the perpendicular force and the distance between the point of application of the force and the centre of rotation:

\tau=Fd

Where, in this case:

F = 25 N is the perpendicular force

d = 0.5 m is the distance between the force and the center

By using the equation, we find

\tau=(25 N)(0.5 m)=12.5 Nm


4) 0.049 kg m^2/s

The relationship between angular momentum (L), moment of inertia (I) and angular velocity (\omega) is:

L=I\omega

In this problem, we have

I=0.007875 kgm^2

\omega=6.28 rad/s

So, the angular momentum is

L=I\omega=(0.007875 kgm^2)(6.28 rad/s)=0.049 kg m^2/s

6 0
3 years ago
Please help me I need this for a test
Marysya12 [62]

Answer:

Explanation:

Lol thats big tufffffffffvffffffftg

fuf

8 0
3 years ago
Two ice skaters stand in the middle of an ice rink. Drew has a mass of 75 kg, and Lily has a mass of 55 kg. Drew holds Lily, and
ss7ja [257]

PART a)

Before Drew throw Lily in forwards direction they both stays at rest

So initial speed of both of them is zero

So here we can say that initial momentum of both of them is zero

So total momentum of the system initially = ZERO

PART b)

Since there is no external force on the system of two

so there will be no change in the momentum of this system and it will remain same as initial momentum

So final momentum of both of them will be ZERO

PART c)

As we know that momentum of both will be zero always

so we have

P_1 + P_2 = 0

75(v) + 55(2) = 0

v = 1.47 m/s in opposite direction

7 0
3 years ago
Read 2 more answers
Other questions:
  • Every object that has mass attracts every other object with a gravitational force: It has been proven that the size of the
    7·2 answers
  • Suppose you observe that at night, the air just above the ground feels cooler than the air above it. then in the middle of a sun
    15·1 answer
  • Which two objects have stored energy?
    14·2 answers
  • You are in a spaceship moving in a straight line at constant speed. You cannot see out of the ship. Assuming perfectly uniform m
    8·1 answer
  • The lifting force generated by fluids on immersed objects is known as ____________.
    7·1 answer
  • In what part of the earth does convection occur?
    15·1 answer
  • Water, H2O, is a molecule made of oxygen and hydrogen. The bonds that hold water molecules together are due to shared electrons,
    5·1 answer
  • Turns red lithmus paper blue
    8·1 answer
  • A ____ is another name for a group of elements with similar properties
    12·1 answer
  • How will you demonstrate Newton's 1st Law of Motion at home? Brainstorm 2 or 3 possible demonstrations
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!