Given :
0.00072 M solution of
at
.
To Find :
The concentration of
and pOH .
Solution :
1 mole of
gives 2 moles of
ions .
So , 0.00072 M mole of
gives :
![[OH^-]=2 \times 0.00072\ M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D2%20%5Ctimes%200.00072%5C%20M)
![[OH^-]=0.00144\ M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.00144%5C%20M)
![[OH^-]=1.44\times 10^{-3}\ M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.44%5Ctimes%2010%5E%7B-3%7D%5C%20M)
Now , pOH is given by :
![pOH=-log[OH^-]\\\\pOH=-log[1.44\times 10^{-3}]\\\\pOH=2.84](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D%5C%5C%5C%5CpOH%3D-log%5B1.44%5Ctimes%2010%5E%7B-3%7D%5D%5C%5C%5C%5CpOH%3D2.84)
Hence , this is the required solution .
<h2>
Hello!</h2>
The answer is:
The new volume will be 1 L.

<h2>
Why?</h2>
To solve the problem, since we are given the volume and the first and the second pressure, to calculate the new volume, we need to assume that the temperature is constant.
To solve this problem, we need to use Boyle's Law. Boyle's Law establishes when the temperature is kept constant, the pressure and the volume will be proportional.
Boyle's Law equation is:

So, we are given the information:

Then, isolating the new volume and substituting into the equation, we have:



Hence, the new volume will be 1 L.

Have a nice day!
1.7960L
Explanation:
the mass of the gas is constant in both instances
pv/T=constant(according to pv=nRT)
745mmHg*2L/298K=760mmHg*v/273K
v=1.7960L
Answer:
A buffer system can be made by mixing a soluble compound that contains the conjugate ... 10.0 grams of sodium acetate in 200.0 mL of 1.00 M acetic acid.
Explanation: