The best option is melting point
Answer:
1. A. True
2. A. True
3. B. False
4. A. True
5. B. False
Explanation:
1. The particles are in constant motion. The collisions of the particles with the walls of the container are the cause of the pressure exerted by the gas. A. True. The pressure of an ideal gas is higher than the one that would exert a real gas.
2. The particles are assumed to exert no forces on each other; they are assumed neither to attract nor to repel each other. A. True. The intermolecular forces are negligible.
3. The particles are so small compared with the distances between them that the volume of the individual particles can be assumed to be about 1 mL. B. False. The volume of the gas particles is negligible.
4. The molecules in a real gas have finite volumes and do exert forces on each other, thus real gases do not conform to some of the assumptions of an ideal gas as stated by the kinetic molecular theory. A. True. We cannot apply ideal gas laws to real gases.
5. The average kinetic energy of a collection of gas particles is assumed to be inversely proportional to the Kelvin temperature of the gas. B. False. The average kinetic energy of a collection of gas particles is assumed to be directly proportional to the Kelvin temperature of the gas.
There is a thing called gravity. Gravity in the earth causes anything to stay down. There was an experiment a person held a plastic box with bricks on earth. It was really hard to pick it up. Then in the ISS (International Space Station) the same person help and it was so much easier no hardship at all, even a baby can do it!!
5. Length times With times Hight = Volume or L*W*H=V
Gravity is the force of attraction between two objects, and Earth's gravity pulls matter downward, toward its center. It pulls precipitation down from clouds and pulls water downhill. Gravity also moves air and ocean water. ... Gravity pulls denser air and water downward, forcing less dense air and water to move upward.