Answer:
this is due to difference in speeds of sound and light
Explanation:
light has a speed of 3×10^8 m/s and it is seen at once because it takes negligible time due to very high speed and short distance that is why as soon as lightning occurs we can see it . since thundering sound travels with speed of sound which is about 330 to 340 m/s in air hence it takes some time as described in question as 6 seconds
Answer:
Explanation:
Acceleration is equal to the change in velocity over the change in time, or
where the change in velocity is final velocity minus initial velocity. Filling in:
Note that I made the backward velocity negative so the forward velocity in our answer will be positive.
Simplifying that gives us:
and then isolating the final velocity, our unknown:
3.0(6.0) = v + 3.0 and
3.0(6.0) - 3.0 = v and
18 - 3.0 = v so
15 m/s = v and because this answer is positive, that means that the car is no longer rolling backwards (which was negative) but is now moving forward.
Answer:
18.9 m.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Final velocity (v) = 70 km/h
Height (h) =?
Next, we shall convert 70 km/h to m/s. This can be obtained as follow:
3.6 km/h = 1 m/s
Therefore,
70 km/h = 70 km/h × 1 m/s / 3.6 km/h
70 km/h = 19.44 m/s
Finally, we shall determine the height. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 19.44 m/s
Acceleration due to gravity (g) = 10 m/s²
Height (h) =?
v² = u² + 2gh
19.44² = 0² + (2 × 10 × h)
377.9136 = 0 + 20h
377.9136 = 20h
Divide both side by 20
h = 377.9136 / 20
h = 18.9 m
Thus, the car will fall from a height of 18.9 m
Answer:
<h3>The answer is 500 km </h3>
Explanation:
The distance covered by an object given it's velocity and time taken can be found by using the formula
<h3>distance = average velocity × time</h3>
From the question
average speed = 250 km/h
time = 2 hrs
We have
distance = 250 × 2
We have the final answer as
<h3>500 km</h3>
Hope this helps you
Answer:
Your answer would be C, Radio waves.
Explanation: