Answer:
25100A
Explanation:
t= 1ms = 0.001s
q = 25.1C
From the relationship between charge and current , the charge is equal to the product of current and time
q = i×t
Where q = charge
i = current
t = time
i = q/t = 25.1/0.001
i = 25100A.
A. Using a combination lens made up of lenses, each of which has a different index of refraction. Is the correct answer.
The final velocity of the train at the end of the given distance is 7.81 m/s.
The given parameters;
- initial velocity of the train, u = 6.4 m/s
- acceleration of the train, a = 0.1 m/s²
- distance traveled, s = 100 m
The final velocity of the train at the end of the given distance is calculated using the following kinematic equation;
v² = u² + 2as
v² = (6.4)² + (2 x 0.1 x 100)
v² = 60.96
v = √60.96
v = 7.81 m/s
Thus, the final velocity of the train at the end of the given distance is 7.81 m/s.
Learn more here:brainly.com/question/21180604
Sorry I had the answer but it wont let me type numbers :(.:
To solve this problem we will apply the concept of magnification, which is given as the relationship between the focal length of the eyepieces and the focal length of the objective. This relationship can be expressed mathematically as,

Here,
= Magnification
= Focal length eyepieces
= Focal length of the Objective
Rearranging to find the focal length of the objective

Replacing with our values


Therefore the focal length of th eobjective lenses is 27.75cm