Answer:
This process naturally occurs in the environment, where it is carried out by specialized bacteria.
Explanation:
Answer:
163.2g
Explanation:
First let us generate a balanced equation for the reaction. This is shown below:
4Al + 3O2 —> 2Al2O3
From the question given, were were told that 3.2moles of aluminium was exposed to 2.7moles of oxygen. Judging by this, oxygen is excess.
From the equation,
4moles of Al produced 2moles of Al2O3.
Therefore, 3.2moles of Al will produce = (3.2x2)/4 = 1.6mol of Al2O3.
Now, let us covert 1.6mol of Al2O3 to obtain the theoretical yield. This is illustrated below:
Mole of Al2O3 = 1.6mole
Molar Mass of Al2O3 = (27x2) + (16x3) = 54 + 48 =102g/mol
Mass of Al2O3 =?
Number of mole = Mass /Molar Mass
Mass = number of mole x molar Mass
Mass of Al2O3 = 1.6 x 102 = 163.2g
Therefore the theoretical of Al2O3 is 163.2g
Answer:
- <em>To balance a chemical equation it may be necessary to adjust the </em><u>coefficients.</u>
Explanation:
The <em>coefficients</em> of a <em>chemical equation</em> are the numbers that you put in front of each reactant and product. They are used to balance the equation and comply with the law of mass conservation.
By adjusting the coefficients you obtain the relative amounts (moles) of each product and reactant, i.e. the mole ratios.
Here an example.
The first information is what is called a word equation. E.g. nitrogen and hydrogen react to form ammonia:
- Word equation: hydrogen + nitrogen → ammonia
- Skeleton equation: H₂ + N₂ → NH₃
This equation shows the chemical formulae but it is not balanced. The law of mass conservation is not observed.
So, in order to comply with the law of mass conservation you adjust the coefficients as follow.
- Balanced chemical equation: 3H₂ + N₂ → 2NH₃
As you see, it was necessary to modify the coefficients. Now the law of conservation of mass is observed and you get the mole ratios:
- 3 mol H₂ : 1 mol N₂ : 2 mol NH₃
Answer:
The answer is its equal to the volume of its container.
--------------------------------------------------------------------------------
I hope this helps! :)
Answer:
p and d orbitals
Explanation:
A π bond forms when two orbitals overlap side-on.
The most common types are formed by the overlap of p orbitals (Fig. 1).
However, d orbitals can also overlap sideways with each other to form dπ-dπ bonds and with p orbitals to form dπ-pπ bonds (Fig.2).