Nobles gases, since they all have 8 e- on their last layer of electrons.
<span>The </span>abundance of a chemical element<span> is a measure of the </span>occurrence<span> of the </span>element<span> relative to all other elements in a given environment. Abundance is measured in one of three ways: by the </span>mass-fraction<span> (the same as weight fraction); by the </span>mole-fraction<span> (fraction of atoms by numerical count, or sometimes fraction of molecules in gases); or by the </span>volume-fraction<span>. Volume-fraction is a common abundance measure in mixed gases such as planetary atmospheres, and is similar in value to molecular mole-fraction for gas mixtures at relatively low densities and pressures, and </span>ideal gas<span> mixtures. Most abundance values in this article are given as mass-fractions.
</span>
Is this multiple choice?<span />
For this problem, we use Graham's Effusion Law to find out the rate of effusion of chlorine gas. The formula is as follows:
R₁/R₂ = √(M₂/M₁)
Let 1 be N₂ while 2 be Cl₂
255/R₂ = √(28/70.8)
Solving for R₂,
R₂ = 405.5 s
<em>Thus, it would take 405.5 s to effuse chlorine gas.</em>