Answer:
Tidal heating
Explanation:
Tidal force is the ability of a massive body to produce tides on another body. The tidal force depends on the mass of the body that produces the tides and the distance between the two bodies.
Tidal forces can cause the destruction of a satellite that orbits a planet or a comet that is too close to the Sun or a planet. When the orbiting body crosses the "Roche boundary", the tidal forces along the body are more intense than the cohesion forces that hold the body together.
Tidal friction is the force between the Earth's oceans and ocean floors caused by the gravitational attraction of the Moon. The Earth tries to transport the waters of the oceans with it, while the Moon tries to keep them under it and on the opposite side of the Earth. In the long term, tidal friction causes the Earth's rotation speed to decrease, thus shortening the day. In turn, the Moon increases its angular momentum and gradually spirals away from Earth. Finally, when the day equals the orbital period of the Moon (which will be about 40 times the length of the current day), the process will cease. Subsequently, a new process will begin when the power to raise tides from the Sun takes angular momentum from the Earth-Moon system. The Moon will then spiral towards Earth until it is destroyed when it enters the "Roche boundary."
<u>Tidal heating
</u>
It is the warming caused by the tidal action on a planet or satellite. The most important example of tidal heating in the Solar System is the effect of Jupiter on its Io satellite, in which the tidal effects produce such high temperatures that the interior of the satellite melts, producing volcanism.
The maximum height reached by the ball is 99.2 m
Explanation:
When the ball is thrown straight up, it follows a free fall motion, which is a uniformly accelerated motion with constant acceleration (
towards the ground). Therefore, we can use the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the displacement
In this problem, we have:
u = 44.1 m/s is the initial vertical velocity of the ball
v = 0 is the final velocity when the ball reaches the maximum height
s is the maximum height
is the acceleration of gravity (downward, so negative)
Solving for s, we find the maximum height reached by the ball:

Learn more about free fall:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly
Hello Again! I think the Answer might be 220 m! ( 1/2) ( 21 m/s + 0 m/s) (21 s) = 220 m
Answer:-q
Explanation:
Given
Capacitor is charged to a battery and capacitor acquired a charge of q i.e.
+q on Positive Plate and -q on negative Plate.
If the plate area is doubled and the plate separation is reduced to half its initial separation then capacitor becomes four times of initial value because capacitor is given by

where A=area of capacitor plate
d=Separation between plates
This change in capacitance changes the Potential such that new charge on the negative plate will remain same -q