Answer:
The total electric potential at mid way due to 'q' is 
The net Electric field at midway due to 'q' is 0.
Solution:
According to the question, the separation between two parallel plates, plate A and plate B (say) = d
The electric potential at a distance d due to 'Q' is:

Now, for the Electric potential for the two plates A and B at midway between the plates due to 'q':
For plate A,
Similar is the case with plate B:
Since the electric potential is a scalar quantity, the net or total potential is given as the sum of the potential for the two plates:


Now,
The Electric field due to charge Q at a distance is given by:

Now, if the charge q is mid way between the field, then distance is
.
Electric Field at plate A,
at midway due to charge q:

Similarly, for plate B:

Both the fields for plate A and B are due to charge 'q' and as such will be equal in magnitude with direction of fields opposite to each other and hence cancels out making net Electric field zero.
Energy is the capacity of doing work
Answer:
<h2>289.9 kg.m/s</h2>
Explanation:
The momentum of an object can be found by using the formula
momentum = mass × velocity
From the question we have
momentum = 130 × 22.3
We have the final answer as
<h3>289.9 kg.m/s</h3>
Hope this helps you
It is an imaginary transformer which has no core loss, no ohmic resistance and no leakage flux. The ideal transformer has the following important characteristic. The resistance of their primary and secondary winding becomes zero. The core of the ideal transformer has infinite permeability.
Answer:
A : hot and moist, maritime tropical
B: cold and dry, maritime polar
C: hot and moist , maritime tropical
D: cold and dry, continental polar
E: hot and moist , maritime tropical
F: cold and dry , maritime polar
Explanation:
Cold air is denser than warm air. The more water vapor that is in the air, the less dense the air becomes. That is why cold, dry air is much heavier than warm, humid air.
Maritime polar (mP) air masses are cool, moist, and unstable. Some maritime polar air masses originate as continental polar air masses over Asia and move westward over the Pacific, collecting warmth and moisture from the ocean.
Maritime tropical (mT) air masses are warm, moist, and usually unstable.