Answer:
15.106 N
Explanation:
From the given information,
The weight of the bucket can be calculated as:

The mass of the water accumulated in the bucket after 3.20s is:


To determine the weight of the water accumulated in the bucket, we have:



For the speed of the water before hitting the bucket; we have:


v = 8.4 m/s
Now, the force required to stop the water later when it already hit the bucket is:


F = 1.68 N
Finally, the reading scale is:
= 7.154 N + 6.272 N + 1.68 N
= 15.106 N
a) 1.57 m/s
The sock spins once every 2.0 seconds, so its period is
T = 2.0 s
Therefore, the angular velocity of the sock is

The linear speed of the sock is given by

where
is the angular velocity
r = 0.50 m is the radius of the circular path of the sock
Substituting, we find:

B) Faster
In this case, the drum is twice as wide, so the new radius of the circular path of the sock is twice the previous one:

At the same time, the drum spins at the same frequency as before, therefore the angular frequency as not changed:

Therefore, the new linear speed would be:

And substituting,

So, we see that the linear speed has doubled.
Answer:
4.2 x 10⁷N
Explanation:
Given parameters:
Charge on ball:
q₁ = 3C
q₂ = 14C
Distance between balls = 9000m
Unknown:
Force acting on the two balls
Solution:
The force experienced by the two charges is given by coulombs law. It is mathematically expressed as;
F = 
where k = 9 x 10⁹Nm²/C²
q is the charges
r is the distance
Input the variables and solve;
F =
= 4.2 x 10⁷N
Answer:

Explanation:
Since
, we calculate the resistance rate by deriving this formula with respect to time:

Deriving what is left (remember that
):

So we have:

Which for our values is (the rate of <em>I(t)</em> is decreasing so we put a negative sign):
