ANSWER:
Aerospace Engineering. ...
Chemical Engineering. ...
Biomedical Engineering.
EXPLANATION:
This is all i know but ... I hope this helps~
Answer:
1.3cm
Explanation:
the arrow is 3 lines past the 1 so it is 1.3cm
Answer: The overhead percentage is 7.7%.
Explanation:
We call overhead, to all those bytes that are delivered to the physical layer, that don't carry real data.
We are told that we have 700 bytes of application data, so all the other bytes are simply overhead, i.e. , 58 bytes composed by the transport layer header, the network layer header, the 14 byte header at the data link layer and the 4 byte trailer at the data link layer.
So, in order to assess the overhead percentage, we divide the overhead bytes between the total quantity of bytes sent to the physical layer, as follows:
OH % = (58 / 758) * 100 = 7.7 %
Answer:
a) 24 kg
b) 32 kg
Explanation:
The gauge pressure is of the gas is equal to the weight of the piston divided by its area:
p = P / A
p = m * g / (π/4 * d^2)
Rearranging
p * (π/4 * d^2) = m * g
m = p * (π/4 * d^2) / g
m = 1200 * (π/4 * 0.5^2) / 9.81 = 24 kg
After the weight is added the gauge pressure is 2.8kPa
The mass of piston plus addded weight is
m2 = 2800 * (π/4 * 0.5^2) / 9.81 = 56 kg
56 - 24 = 32 kg
The mass of the added weight is 32 kg.