Answer:
3 half-lives
Explanation:
The half-life is the time that it takes to a radioactive element to decay to half of its initial amount.
Let's suppose we start with 64 g of the radioactive element.
- After 1 half-life, the mass of the element will be 32 g.
- After 2 half-lives, the mass of the element will be 16 g.
- After 3 half-lives, the mass of the element will be 8 g.
Chlorine. Electronegativity generally increases up and across the periodic table
The value 6.0 x 10^3- 2.3 × 10^3 in scientific notation is 3.7 × 10^3.
<h3> What is scientific notation?</h3>
Scientific notation is a way to write very large or very small numbers so that they are easier to read and work with.
You express a number as the product of a number greater than or equal to 1 but less than 10 and an integral power of 10 .
<h3>Why it is used? </h3>
There are two reasons to use scientific notation.
- The first is to reveal honest uncertainty in experimental measurements.
- The second is to express very large or very small numbers so they are easier to read.
Given,
= 6.0 x 10^3- 2.3 × 10^3
= (6.0 - 2.3) × 10^3
= 3.7 × 10^3
Thus, we find that the value 6.0 x 10^3- 2.3 × 10^3 in scientific notation is 3.7 × 10^3.
learn more about scientific notation :
brainly.com/question/18073768
#SPJ1
Answer:
C. involve the attraction of opposite charges
Explanation:
<em>Ionic bonding</em> involves the attraction between <em>oppositely charged ions</em>, as in Na⁺ Cl⁻.
<em>Covalent bonding</em> involves the attraction between <em>negatively charged electrons and positivey charged nuclei</em>, as in a C-H bond.
A is <em>wrong</em>. Ionic bonding involves the transfer of electrons.
B is <em>wrong</em>. Covalent bonding involves the sharing of electrons.
D is <em>wrong</em>. Ionic bonds are usually stronger than covalent bonds.
I think 1.00 mol sorry if I’m wrong