Answer:
50 m
Explanation:
Acceleration= force/mass
3000/3000=1m/s^-2
Applying equation of motion:
V^2=U^2+2as; V is final velocity, u is initial velocity, a is acceleration and s is the distance covered.
0=10^2 -2*1s;
Solve for s
The ratio of the turns to the voltage should be equal
i.e: 200/120 = t/12
so the secondary coil should have 20 turns
Answer:
u = 449 m/s
Explanation:
Given,
Mass of the bullet, m = 26 g
Mass of the wooden block,M = 4.7 Kg
height of the block,h = 0.31 m
initial speed of the block, u = ?
Using conservation of energy




v = 2.47 m/s
Now, using conservation of momentum to calculate the speed of the bullet.
m u + M u' = (M+m)v
m u = (M+m)v
0.026 x u = (4.7+0.026) x 2.47
u = 449 m/s
Hence, the speed of the bullet is equal to 449 m/s.
Answer:
0.43 m
Explanation:
Angle of incident and angle of reflection is same.
tan Θh = L' / x (eye)
L' = Length of the window
x (eye) = Distance of the mirror from the eye
tan Θh = L / (x (eye) + xw)
xw = Distance of the mirror from the window
L'/ x (eye) = L / ( x (eye) + xw)
L' = L*x (eye) / ( x (eye) + xw)
L' = (2*0.5) / (0.5 + 1.8)
L' = 0.43 m