Answer: there can't be acceleration when there is no movement
Explanation:
The amount of work done in emptying the tank by pumping the water over the top edge is 163.01* 10³ ft-lbs.
Given that, the tank is 8 feet across the top and 6 feet high
By the property of similar triangles, 4/6 = r/y
6r = 4y
r = 4/6*y = 2/3*y
Each disc is a circle with area, A = π(2/3*y)² = 4π/9*y²
The weight of each disc is m = ρw* A
m = 62.4* 4π/9*y² = 87.08*y²
The distance pumped is 6-y.
The work done in pumping the tank by pumping the water over the top edge is
W = 87.08 ∫(6-y)y² dy
W = 87.08 ∫(6y³ - y²) dy
W = 87.08 [6y⁴/4 - y³/3]
W = 87.08 [3y⁴/2- y³/3]
The limits are from 0 to 6.
W = 87.08 [3*6⁴/2 - 6³/3] = 87.08* [9*6³ - 2*36] = 87.08(1872) = 163013.76 ft-lbs
The amount of work done in emptying the tank by pumping the water over the top edge is 163013.76 ft-lbs.
To know more about work done:
brainly.com/question/16650139
#SPJ4
The boat traveled from the dock north to the 200-meter marker in the bay in less than 5 minutes, giving the passengers several more hours to fish.
Explanation:
A boat traveling from the dock northward to a 200m mark in the bay in less than 5minutes giving the passengers several more hours to fish is a typical and best example of velocity description.
Velocity is the displacement of a body divided by the time taken.
Velocity = 
Displacement is the distance covered in a specific direction. Time is duration of the travel.
Velocity is a vector quantity that has both magnitude and direction. This implies that the value of velocity is recorded with a directional attribute.
We can say velocity is the speed of a body in a given direction
Only the last option gives the displacement of the body and the duration it traveled.
Learn more:
Velocity brainly.com/question/10883914
#learnwithBrainly
Solution :
The angular acceleration,
is obtained from the equation of the
of rotational motion,
Thus,

or 
where
is torque, F is force, d is moment arm distance, I is the moment of inertia
Thus, 
Now if the force and the moment arm distance are constant, then the
That is when, F = d = constant, then
.
Thus, moment of inertia, I is proportional to mass of the bar.
The mass is less for the bar in case (1) in comparison with that with the bar in case (2) due to the holes that is made in the bar.
Therefore, the bar in case (1), has less moment of inertia and a greater angular acceleration.
Answer:
a) {[1.25 1.5 1.75 2.5 2.75]
[35 30 25 20 15] }
b) {[1.5 2 40]
[1.75 3 35]
[2.25 2 25]
[2.75 4 15]}
Explanation:
Matrix H: {[1.25 1.5 1.75 2 2.25 2.5 2.75]
[1 2 3 1 2 3 4]
[45 40 35 30 25 20 15]}
Its always important to get the dimensions of your matrix right. "Roman Columns" is the mental heuristic I use since a matrix is defined by its rows first and then its column such that a 2 X 5 matrix has 2 rows and 5 columns.
Next, it helps in the beginning to think of a matrix as a grid, labeling your rows with letters (A, B, C, ...) and your columns with numbers (1, 2, 3, ...).
For question a, we just want to take the elements A1, A2, A3, A6 and A7 from matrix H and make that the first row of matrix G. And then we will take the elements B3, B4, B5, B6 and B7 from matrix H as our second row in matrix G.
For question b, we will be taking columns from matrix H and making them rows in our matrix K. The second column of H looks like this:
{[1.5]
[2]
[40]}
Transposing this column will make our first row of K look like this:
{[1.5 2 40]}
Repeating for columns 3, 5 and 7 will give us the final matrix K as seen above.