Answer:
See the answers below.
Explanation:
To solve this problem we must use the following equation of kinematics.

where:
Vf = final velocity = 10 [m/s]
Vo = initial velocity = 40 [m/s]
t = time = 5 [s]
a = acceleration [m/s²]
Now replacing:
![10=40-a*5\\40-10=a*5\\30=5*a\\a=6[m/s^{2}]](https://tex.z-dn.net/?f=10%3D40-a%2A5%5C%5C40-10%3Da%2A5%5C%5C30%3D5%2Aa%5C%5Ca%3D6%5Bm%2Fs%5E%7B2%7D%5D)
Note: The negative sign in the above equation means that the velecity is decreasing.
2)
To solve this second part we must use the following equation of kinematics.

where:
x = distance [m]
![(10)^{2} =(40)^{2} -2*6*x\\100=1600-12*x\\12*x=1600-100\\12*x=1500\\x=125[m]](https://tex.z-dn.net/?f=%2810%29%5E%7B2%7D%20%3D%2840%29%5E%7B2%7D%20-2%2A6%2Ax%5C%5C100%3D1600-12%2Ax%5C%5C12%2Ax%3D1600-100%5C%5C12%2Ax%3D1500%5C%5Cx%3D125%5Bm%5D)
All of those! A qualitative observation is any one that doesn't include numbers. <em>Quantitative </em>observations include numbers, but not usually any other kind of information.
Explanation:
As we know, resistance is the ratio of voltage used and current flowing through the circuit. So,
<h3>R = V/I</h3>
By error calculation
<h3>∆R/R = [(∆V/V)100] + [(∆I/I)100]</h3>
V = 100 ± 6% V
I = 10 ± 0.2% A
∆R/R= (5/100)×100 + (0.2/10)×100
∆R/R=5+2=7%
<h2>So, percentage error in resistance (R) = ± 7%.</h2>
Hello. The answer, though I don't know what options you need to be answered, is that there is less friction between the car tires and the ice, than when they are on the road. Causing the car to slide.
Isn't it elements cuz molecules are made only out of elements. So that will be the only right answer that is available.